ЛАБОРАТОРНЫЙ АВТОМАТИЧЕСКИЙ КОПЁР типа LUA-2e/r

ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ ЭКСПЛУАТАЦИИ

Номер аппарата

e-mail: morek@multiserw-morek.pl www.multiserw-morek.pl Тел/факс: +48 33 879 21 72

СОДЕРЖАНИЕ

l.	Применение	3
II.	Техническая характеристика	3
III.	Констукция	4
IV.	Обслуживание управляющего пульта	7
V.	Исполнение лабораторных фасонок	8
VI.	Измерение текучести формовочных смесей	9
VII.	Консервация	10
VIII.	Оснащение	11
IX.	Диаграмм	12
Χ.	Рисунок 1	13
XI.	Рисунок 2	13

I. <u>ПРИМЕНЕНИЕ</u>

Полуавтоматический лабораторный копёр служит для:

- 1. лабораторных фасонок из формовочных материалов для испытания свойств масс,
- 2. Определения текучести формовочных смесей методом Вальтера-Дитерта и "GF".

II. TEXHUYECKAS XAPAKTEPUCTUKA

		STANDARD PN/EN
Номинальный вес груза	6.350 ^{± 0.01} кг	6.667 ^{±0.01} кг
Высота падения груза	50.0 ±0.2 MM	50.3 ^{-0.2} мм
Номинальная работа сгущения при трёхкратном опадении груза	9.34 Дж	9.8 дж
Цилиндрическая фасонка :		
диаметр	50 ^{±0.2} мм	50 ^{±0.2} мм
высота	50 ±0.3 MM	50 ^{±0.3} мм
Восьмёрочная фасонка :		
ширина рабочего сечения	25.00 ^{±0.2} мм	22.36 ^{±0.2} мм
высота рабочего сечения	25.00 ^{±0.2} мм	22.36 ^{±0.2} мм
поверхность рабочего срываемого сечения	6.25 cm ²	5.0cm ²
Продольная фасонка:		
ширина рабочего сечения	25.00 ^{±0.2} мм	22.36 ^{±0.2} мм
высота рабочего сечения	25.00 ^{±0.2} мм	22.36 [±] мм
поверхность рабочего сечения	6.25 cm ²	5.0 cm^2
рабочая длина пробы		172.0 мм
Напряжение питания Потребляемая мощность		220В/50 Гц 60 ват

Условия работы:	
ручной цикл полуавтоматический цикл	
Время одного цикла	2 сек
Габаритные размеры:	
ширина	390 мм
длинна	340 мм
высота с основанием	1.650 мм
Вес с комплексным оснащением	100 кг

III. <u>КОНСТРУКЦИЯ</u>

Лабораторный полуавтоматический копёр состоит из следующих основных элементов: корпуса, основания, вертикального валика, груза, венца вместе с системой привода кулачка, электрической системы, часового показателя, консоля, шкалы, кулачка а также оснащения в состав которого входит:

- 1. **Втулка для цилиндрических фасонок** у неё внутренний диаметр 50^{±0.05}мм и высота 140 мм. Втулка служит для произведения цилиндрических фасонок а также испытания газопроницаемости масс.
- 2. Форма с разрезанной втулкой для цилиндрических проб состоит из разрезанной втулки вдоль боковой создающей для улучшения вытаскивания пробы. Снаружи втулки есть металлический перстень с прижимным винтом, который служит для сжатия разрезанной втулки. Внутренний диаметр после сжатия составляет 50^{±0.05}мм, а высота 120 мм.

- 3. Основание формочек для цилиндрических фасонок это перстень с дном, из которого выходит шпунт, фиксирующий основание относительно копёра. Основание служит для формовки нижней части цилиндрических фасонок а также для установки цилиндрических втулок.
- 4. **Надставка формочек для цилиндрических фасонок** имеет вид конусной лейки для наполнения формовочной смесью втулок для цилиндрических фасонок.
- 5. Формочка для восмёрочных фасонок это металлический ящик, состоящий из подставки, двух половин формирующих фасонки, надставки и ножика. Служит формовки фасонок для испытания прочности на растяжение.Формирующие половины зафиксированы относительно себя фиксирующими болтами и стоят на основе. В донышку подставки есть болт для фиксмрования формочки относительно оси копёра. Надставку накладывается на формирующие части и крепится нажимным болтом. Она служит как объём облегчающий наполнение формочки формовочной смесю. Между надставкой и формирующими частями расположен передвижной ножик сделан из стальной жести, которая служит для среза избавки смеси после трамбовки.
- 6. **Формочка для продольных фасонок** она построена похоже как формочка для восьмёрочных фасонок и служит для формовки проб для определения прочности на изгиб. Надставка фиксируетя относительно формирующих половин с помощью фиксирующих болтов.
- 7. **Прокладки для сушки фасонок** они исполнены из стальной жести толщиной 2мм в виде скамеек. Эта форма способствует захвату прокладок лабораторными щипцами.

- 8. Втулка для определения текучести (методом "ГФ") состоит из гильзы внутренним диаметром $50^{\pm0.05}$ мм и подпора. Монтажа гильзы с подпорой достигается с помощью штикового замка.
- 9. **Проверка высоты исполнена в виде втулки высотой 50**^{±0,02}мм служит проверка высоты трамбовчных цилиндрических фасонок хода падения груза.
- 10. **Шестиугольный штоковый ключ** служит для отвинчивания винтов крепящих прижимные стопки в цапфе вертикального валика копёра.
- 11. **Выталкиватель для цилиндрических фасонок** исполнен в виде профильной чугунной отливки.
- 12. Захват стопки состоит из фасонного захвата и крепящего винта до вертикального валика.

Корпус копёра и консоль- это чугунные отливки скрученны винтами. Основа корпуса прикреплена через чугунную плиту к подпоре копёра.

Сверху подставы корпуса находится приподнятая прямоугольная плоскость с отверствием, которая служит для установки формочек. Верхняя часть корпуса окончена плечом направленным вперёд. В плече находится сквозное ведущее отверствие, в котором двигается вертикальный валик. Вертикальный валик ведётся двухсторнне в основе копёра и консоли, в верхней части которой находится отсчёт отклонения высоты фасонки. На вертикальном валике насажен цилиндрический груз, а также ярмо вместе с приводом кулачка. Привод кулачка соединён специальным сцеплением через лентовую передачу с электродвигателем. В верхней части кронштейна прикреплена шкала, которая служит для определения текучести методом "ГФ".

Электрическая схема находится в ящике, где на передней стенке есть управляющий пульт (рис.1). с левой стороны корпуса находится кулачёк который служит для подъёма вертикального валика во время закладывания соответстующих стопок и формочек.

Установление кулачка в верхнем положении валика не даёт возможности случайного включения благодаря соответстующей блокировке.

IV. ОБСЛУЖИСАНИЕ УПРАВЛЯЮЩЕГО ПУЛЬТА (РИС. 1.)

1. Пуск аппарата

После включения питания появляется напись ËTA LUA — 2e и 4-x значный серийный номер прибора. После этого прибор переходит в ожидающее состояние, он готов к работе : на экране появится буква"п" и в последнее время применяемое количество ударов (нп. 14).

Кнопками МИНУС и ПЛЮС можно менять эту величину в пределах от 1 до 99.

Эта настава запоминается даже после выключения питания.

Если в течение ок.25 сек.не производитя никаких операции, тогда наступает притемнение экрана (он проходит в экономный порядок) – каждый нажим кнопки возвращает нормальное состояние.

2. Приведение однократного удара (ручной порядок)

Нажйм кнопки РУКА (P) ведёт к одному удару, после чего прибор возвращается в экономное положение.

Произведение РУЧНОГО цикла не ведёт к замене настава количества.

3. Приведение серии ударов (АВТОМАТИЧЕСКИЙ порядок)

Нажим кнопки ABTO(A) включает електродвигатель копёра: на экране явится буква П и количество ударов до конца серии – после отсчёта до нуля двигатель выключается, а прибор входит в исходное положение. если во время отсчёта нажмём кнопку РУКА (Р) тогда мгновенно работа кончается и наступает переход в исходное положение.

V. ИСПОЛНЕНИЕ ЛАБОРАТОРНЫХ ФАСОНОК

Количество формовочной смеси нужное для исполнения всех видов фасонок о определённых высотах и точности устанавливается экспериментально.

Исполнение фасонок происходит следующим образом: испытуемый формовочный материал всыпывается свободно в гильзу установленную на основе или в формочку и после выравнивания верхней поверхности вставляется гильзу или формочку со смесю на копёр.

Следовательно с помощю кулачка медленно опускается стопку копёра так, чтоб легко опёрлась о массу в гильзе или формочке. Это нормальная степень сжатия. После трёхкратного удара цилиндрическая фасонка должна иметь высоту $50^{\pm0.3}$ мм, а восмёрочная и продольная **GOST**...25,0 мм....**РN/EN** 22.3 мм...

Проверяется их методом отсчёта черты вырезанной на вертикальном валике относительно допускной щели, находящейся с левой стороны в окошке глазка. Фасонки, которых величина не совпадает с толеранцией отбрасываем. Недопустимо досыпывать или удалять массу из гильз или формочек во вемя трамбовки.

После получения фасонки согласно с требованием, фасонку взвешивается и в дальнейших испытаниях взвешивается достигнутое экспериментально количество смеси.

Фасонок цилиндрических предназначенных для испытания газопроницаемости в сыром состоянии не надо вынимать из гильзф. В случае другово определения, фасонки удаляется из гильзы с помощью выталкивателя.

<u>Недопустимо выталкивание фасонки из гильзы ударом.</u> Цилиндрические фасонки из масс о низкой прочности во влажном состоянии (которые сушится) производится в гильзе с разрезанной формрчкой, тогда легче её удалить.

Восьмёрочные фасонки для определения прочности на разрыв в просушенном виде исполняется в восьмёрочной формочке. Трамбовка восьмёрочных фасонок происходит с помощью нажимной восмёрочной стопки, укреплённой на цапфе вертикального валика.

Нужную высоту пробы достигается с помощью среза ножиком излишков смеси

после трёкратной трамбовки. Допустимая высота срезаемого слоя не может быть выше 3 мм, что обозначено верхней продольной чертой нахдящейся с правой стороны в окошке глазка.

Продольные фасонки для определения прочности на изгиб в просушенном состоянии производится в продольной фасонке. Способ изготовления продольной фасонки аналогичный восьмёрочной фасонке. Здесь тоже толщина срезаемого слоя не может превысить 3 мм.

VI. ИЗМЕРЕНИЕ ТЕКУЧЕСТИ ФОРМОВОЧНЫХ СМЕСЕЙ

1. Метод Вальтера – Дитерта

- заключается в определении степени деформации стандартной цилиндрической фасонки между четвёртым и пятым ударом грузом копёра. Измерение следует производить следующим методом: на фасонку сделанную стандартным способом (три трамбовки) ударить четвёртый раз грузом копёра.

Следовательно на вертикальном валике копёра прикрепить захват стопки ниже ножки часового индикатора и поставить малую стопку индикатора в положение на пример 5мм а шкалу деления поставить на «0». Ударить грузом пятый раз и отчитать на шкале индикатора уменшение высоты фасонки в мм.

Величину текучести следует вычислить по формуле:

$$Лд = 100 - 40X\%$$

где – Х – уменшение высоты пробы в мм

Если фасонка не меняет высоты между четвёртым и пятым ударом груза (X=0), тогда смесь с которой её произвели , обладает текучестью 100 %.

2. Метод « ГФ «

- заключается в определении высоты формовочной смеси в гильзе, трамбованной трёкратным ударом груза копёра. Измерение следует произвести следующим

способом: взвесить количество массы нужное для получения стандартной цилиндрической фасонки диаметром $50^{\pm0,2}$ мм и высотой $50^{\pm0,3}$ мм. Смонтировать гильзу с подставкой и всыпать в неё взвешенное количество смеси. Поставить гильзу с подставкой в отверствии столика корпуса копёра. Медленно опустить стопку копёра с помощью кулачка, чтобы легко уперлась на смеси состоящей в гильзе. Трамбовать смесь трёхкратным ударом груза копёра.

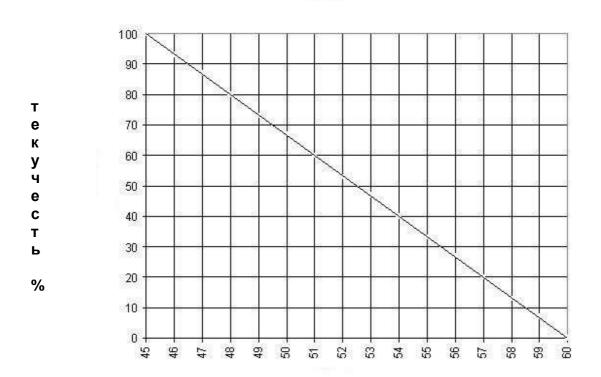
Отсчитать по делениям шкалы текучести высоту, которая совпадает с чертой на валике копёра.

Вычислить текучесть по формуле:

$\Phi = 6,66(60-X)[\%]$

где: X – высота вычитана по шкале.

Текучесть можно тоже непосредственно высчитать из диаграммы в [%]


VII. КОНСЕРВАЦИЯ

Чтобы добится правильной работы копёра, каждый раз после окончания производства фасонок весь копёр тщательно очистить от формовочной смеси и прикрыть чехлом. Части копёра работающие на сдвиг, время от времени прочистить и натереть промаслённой тряпкой. Просмотру сервиса производителем поддаётся один раз в год или чаще при очень интенсивной эксплуатации.

VIII. ОСНАЩЕНИЕ

1.	Втулка для цилиндрических фасонок	1 шт
2.	Формочка с разрезанной гильзой для цилиндрических фасоно	к1 комплект
3.	Подставка формочек для цилиндрических фасонок	1 шт
4.	Надставка формочек для цилиндрических проб	1 шт
5.	Формочка для восмёрочных проб	1 комплект
6.	Формочка для продольных фасонок	1 комплект
7.	Прокладки для просушки фасонок 4х9	3 шт
8.	Гильза для определения текучести методом «ГФ»	1 комлект
9.	Эталон высоты	1 шт
10	. Штоковый ключ	1 шт
11	.Выталкиватель цилиндрических проб	1 шт
12	захват стопки для определения текучести методом	
	Вальтера – Дитерта	1 шт
13	.Двусторонний винт М12х100	3шт
14	.Гайка М12	3 шт
15	.Прокладка для шруп ф13	3 шт

Диаграмма для отсчёта текучести

Высота по шкале (мм)

РИСУНОК 1

РИСУНОК 2

