VENTILATION HEAT EXCHANGERS

A03

1.2.6

CONTENTS

HEAT EXCHANGERS IN GENERAL	p. 1-9
Specialists in heat exchangers	2
Quality and environment	
Product selection program COILS	
Design	4
Hole spacing table & Imperial size table	5
Material & corrosion protection	6
Couplings, output stage & velocities	7
Mollier diagram & formulas	

HFOR DUCTS/UNIT ROOM WALLS p. 10-51

HEAT EXCHANGERS FOR HEATING AND HOT WATER

QJHD	Circular heat exchanger for heating water10-14
QJCD	Circular heat exchanger for cooling water 15-17
QLHG	Slip-clamp connection. Exposed header
QLHF	Flange connection. Exposed header
QLHB	Slip-clamp connection. Integrated header
QLHH	Flange connection. Integrated header

HEAT EXCHANGERS FOR COOLING

QLCG	Slip-clamp connection. Exposed header	24-29
QLCF	Flange connection. Exposed header	24-29
QLCB	Slip-clamp connection. Integrated header	24-29
QLCH	Flange connection. Integrated header	24-29

HEAT EXCHANGERS FOR HEAT RECOVERY. ECOTERM®

Supply air:

Q(L,F)TG	Slip-clamp connection. Exposed header	. 30-35
Q(L,F)TF	Flange connection. Exposed header	. 30-35
Q(L,F)TB	Slip-clamp connection. Integrated header	.30-35
Q(L,F)TH	Flange connection. Integrated header	. 30-35

Exhaust air:

Q(L,F)FG	Slip-clamp connection. Exposed header
Q(L,F)FF	Flange connection. Exposed header
Q(L,F)FB	Slip-clamp connection. Integrated header
Q(L,F)FH	Flange connection. Integrated header

HEAT EXCHANGER FOR EVAPORATING REFRIGERANT (DX)

QLEG	Slip-clamp connection. Exposed header
QLEF	Flange connection. Exposed header
QLEB	Slip-clamp connection. Integrated header
QLEH	Flange connection. Integrated header

HEAT EXCHANGERS FOR CONDENSATION REFRIGERANT

QLOG	Slip-clamp connection. Exposed header
QLOF	Flange connection. Exposed header
QLOB	Slip-clamp connection. Integrated header
QLOH	Flange connection. Integrated header

HEAT EXCHANGERS FOR STEAM

QLSG	Slip-clamp connection. Exposed header 50-51
QLSF	Flange connection. Exposed header

HEAT EXCHANGERS FOR INSTALLATION IN UNITS p. 52

HEALEA	CHANGERS FOR INSTALLATION IN UNITS	p. 52		
HEAT EX	CHANGERS FOR HEATING AND HOT WATER			
QLHN	Casing with inward folded edges on the top and			
	bottom plates. Cover plate for the header.			
	Basic casing without cover plate Casing with outward folded edges on the top and			
QLHO	bottom plates	53-58		
QLHQ	Casing with outward folded edges on the top and	55 50		
	bottom plates. Cover plate for the header.	. 53-58		
HEAT EX	CHANGERS FOR COOLING			
QLCN	Casing with inward folded edges on the top			
	and bottom plates. Cover plate for the header			
QLCT	Basic casing without cover plate	59-65		
QLCO	Casing with outward folded edges on the top and bottom plates	50 65		
QLCQ	Casing with outward folded edges on the top	59-65		
QLUQ	and bottom plates. Cover plate for the header	. 59-65		
НЕЛТ ЕХ	CHANGERS FOR HEAT RECOVERY. ECOTERI			
Supply air		VI		
Q(L,F)TN	Casing with inward folded edges on the top and			
	bottom plates. Cover plate for the header	66-70		
Q(L,F)TO	Casing with outward folded edges on the top			
	and bottom plates	66-70		
Q(L,F)TQ	Casing with outward folded edges on the top and bottom plates. Cover plate for the header	66-70		
Exhaust a		00-70		
Q(L,F)FN	Casing with inward folded edges on the top and			
	bottom plates. Cover plate for the header	71-76		
Q(L,F)FO	Casing with outward folded edges on the top			
	and bottom plates	71-76		
Q(L,F)FQ	Casing with outward folded edges on the top and bottom plates. Cover plate for the header	71-76		
	CHANGER FOR EVAPORATING REFRIGERANT (D	X)		
QLEN	Casing with inward folded edges on the top and	77 02		
QLET	bottom plates. Cover plate for the header Basic casing without cover plate			
QLEO	Casing with outward folded edges on the top			
QLLO	and bottom plates	77-83		
QLEQ	Casing with outward folded edges on the top and			
	bottom plates. Cover plate for the header	77-83		
HEAT EXCHANGERS FOR CONDENSATION REFRIGERANT				
QLON	Casing with inward folded edges on the top and			
	la attaine in latere. Convex in late for the breader	04.01		

QLUN	Casing with inward loided edges on the top and	
	bottom plates. Cover plate for the header	.84-91
QLOT	Basic casing without cover plate	.84-91
QLOO	Casing with outward folded edges on the top and	
	bottom plates	.84-91
QLOQ	Casing with outward folded edges on the top	
	and bottom plates. Cover plate for the header	.84-91

HEAT EXCHANGERS FOR STEAM

QLSK Casing with cover plate for the header

ACCESSORIES p. 94-96

For nearly 70 years, Modine has been developing and manufacturing heat exchangers for air and fluid applications.

All of our products reflect our vast technical expertise and attention towards quality.

Modine sets the global standard for heat exchangers. Supplying over 65000 industrial heat exchangers each year, Modine is a dependable supplier with considerable resources.

At Modine we work in partnership with our customers and by focusing on the result and ensuring reliability, we are a partner that customers can trust with their future.

Always Innovating. Always Improving.

QUALITY AND THE ENVIRONMENT - PRIORITISED AREAS

We supply heat exchangers that are often components in large projects and therefore we are well accustomed to deliver on-time. Products must be delivered to the right place, at the right time and to the exact specification. Our continuous improvement, combined with our testing facilities, deliver products that are at the forefront of the market and that meet or often exceed regulatory standards.

Thanks to their function and performance, several of our products play an active role in recovering waste energy and improving indoor environments. In a structured and methodical way, we strive to safeguard the environment throughout a product's service life by optimising the use of materials and energy from its development, manufacture and application to its phase-out and recycling.

Modine's management system is certified according to ISO 9001:2015, ISO 14001:2015 and ISO 3834-2:2005.

Our catalogue includes our standard range of heat exchangers for indoor ventilation applications. The heat exchangers are designed for heating or cooling in ventilation systems, while some types are designed for heat recovery. Since each product is designed for a special need, there are rarely two identical heat exchangers. Although we have a wide range of standard products, we can also build special solutions just for you – that's what we do best. Contact us for more information.

SELECT THE RIGHT HEAT EXCHANGER WITH THE HELP OF COILS

The product selection software COILS is a flexible and user friendly programme that makes choosing the right heat exchanger easy:

- Heat exchangers:
- heating of air with hot water
- cooling of air with cold water
- cooling of air with evaporating medium or
- heating of air with steam/other condensing media.
- Fluid connected heat recovery system ECOTERM[®]
- Air unit heaters/coolers
- Refrigerant coolers

Let COILS select the optimal dimensions or input the required length, width, fin spacing, etc. COILS offers:

- Eight different on-screen languages
- Print-out language can be chosen regardless of screen language.

- The air's moisture content can be stated in different units
- The airflow and fluid flow can be stated in different units
- Includes all available antifreeze fluids
- Consideration to the height above seal level
- Dimensioning for limitations on air and fluid pressure drop.
- Top surface and/or contamination factors with safety margins
- Price of many products
- Dimensional sketches for several products
- Possibility to choose accessories
- Print-outs include performance and data about the product's dimensions, material, weight and volume
- Possibility to save your calculations for another occasion
- Installation instructions and operating and maintenance guides.

Contact us for the COILS programme or for assistance in selecting an optimized cooler.

HEAT EXCHANGER DESIGN

Our heat exchangers are designed with a fin body, headers and casing and are manufactured in different materials and with different fin spacing. Intended for horizontal or vertical air direction. All heat exchangers conform to air tightness class B on the air side (EN1751).

Our heat exchangers are mainly designed for heating or cooling of air and other gases. Some types are especially designed for heat recovery - ECOTERM[®].

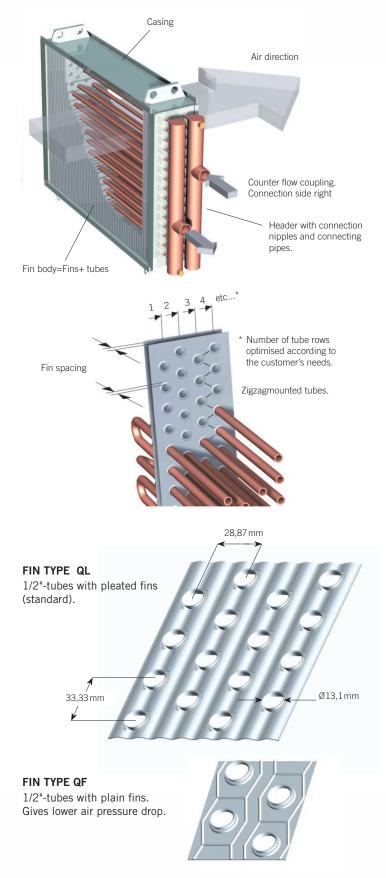
The heat exchangers are built on a number of zigzag-mounted tubes in one or more rows, in the direction of the airflow. The tubes are interconnected into coils in lengths adapted for the different heat exchanger types. The heating medium or refrigerant flows through the coils and the air flows externally. This design means that the water which flows through the tubes can heat or cool the air that passes through the heat exchanger very efficiently. Warm or hot water, oil, process fluids or steam are used as the heating medium. Cooling water, evaporating refrigerant, oil or other fluids are used as the cooling medium.

PROFILED FINS

In order to produce sufficiently large heating or cooling areas and with that compensate the lower heat exchange coefficient on the air side, the tubes are fitted with profiled fins. The fins are attached to the tubes through the expansion of each tube. This produces a very good thermal transfer to the fins. The tube, which is usually made of copper, is fully protected by the fin, except for chilled beams where the tube is not protected by the fin.

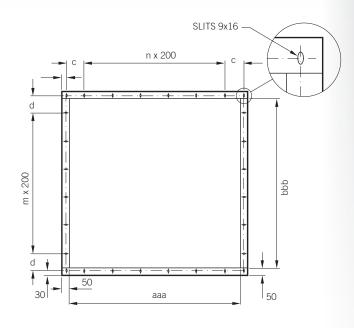
The tubes are brazed to the header, which is fitted with male threaded connections as standard. Alternatively, the connection to be "flat" (without thread). The header is equipped with nipples with plugs for venting and drainage. The drainage nipple can be fitted with a sensor connectiong to the freeze protection thermostat.

INSTALLATION OPTIONS


The heat exchangers are built in a casing with slip-clamp or flange connections on the air side. The slip-clamp casing is designed for installation in ducts. Heat exchangers installed on unit room walls use the N, O, Q or T casing.

SIZES

Our heat exchangers are manufactured as standard in sizes up to $3,5 \times 2,4 \text{ m}$. Our products can be ordered with a number of different accessories (see pages 94-96) and with other dimensions than standard. Contact us for more information.


DIMENSIONING

For dimensioning refer to the program Coils, see page 3.

HOLE SPACING TABLE. The casing is available with a drilled frame as alternative according to RFHF, RVGL.

aaa (cm)		С	bbb (cm)	m	d
020	-	120	020	-	120
025	-	145	025	-	145
030	-	170	030	-	170
035	-	195	035	-	195
040	1	120	040	1	120
045	1	145	045	1	145
050	1	170	050	1	170
055	1	195	055	1	195
060	2	120	060	2	120
065	2	145	065	2	145
070	2	170	070	2	170
075	2	195	075	2	195
080	3	120	080	3	120
085	3	145	085	3	145
090	3	170	090	3	170
095	3	195	095	3	195
100	4	120	100	4	120
105	4	145	105	4	105
110	4	170	110	4	170
115	4	195	115	4	195
120	5	120	120	5	120
125	5	145	125	5	145
120	5	170	130	5	170
135	5	195	135	5	195
140	6	120	140	6	120
145	6	145	145	6	145
150	6	170	150	6	170
155	6	195	155	6	195
160	7	120	160	7	120
165	7	145	165	7	145
170	7	170	170	7	170
175	7	195	175	7	195
180	8	120	180	8	120
185	8	145	185	8	145
190	8	170	190	8	170
195	8	195	195	8	195
200	9	130	200	9	120
205	9	145	205	9	145
210	9	170	210	9	170
215	9	195	215	9	195
220	10	120	220	10	120
225	10	145	225	10	145
230	10	170	230	10	170
235	10	195	235	10	195
240	10	130	240	10	130
250	11	120			
260	12	120			
270	12	120			
280	13	1/0			
290	13	120			
300	13	170			
		120			

IMPERIAL SIZE TABLE

Size in "		Size in mm
1/2"	=	12,7 mm
7/8"	=	22,0 mm
1 1/8"	=	28,6 mm
1 3/8"	=	34,9 mm
1 5/8"	=	41,3 mm
2 1/8"	=	54,0 mm

NEW REFRIGERANTS HAVE HIGH DEMANDS ON THE HEAT EXCHANGER, DX.

Introduction of new refrigerants alter the requirements for heat exchanger design because of higher operation pressure. We have chosen to follow the SS-EN 378-2:2016 to meet today's new demands.

Modine now offers three different heat exchange variants depending on the refrigerant and the ambient temperature.

Test pressure, bar	29	42	62
Operating pressure, bar	22	29	43

To determine the design, maximum ambient temperature shall be notified before order, for the right heat exchanger to be manufactured.

Max. ambient temp.	≤32°C	\leq 38°C	\leq 43°C	≤55°C
Dim. condensing temp.	55°C	59°C	63°C	67°C

MATERIAL AND CORROSION PROTECTION

The standard heat exchangers support most comfort and unit installations, which is more than 90 % of all manufactured heat exchangers. If necessary we provide different methods of protection against corrosion, see the table. In the event a special design is not described here, do not hesitate to contact us.

MATERIAL	FIN	TUBE	HEADER	CASING
Aluminium	S			
Al/Mg	Х			
Copper	Х	S	X	
Copper el. tinned	Х	Х	X	
Copper nickel		Х	X	
Corropaint epoxy-treated Al	x			
Heresite protective finish	x	X	x	X
Painted steel			S	
Hot-dip galvanized steel				S
Stainless steel				X

S = Standard design X = Special design on request

MATERIAL

Casing

Heat exchangers for ducts and unit rooms are as standard made of hot-dip galvanized or stainless steel sheet (EN 1.4301) but are available in austenitic stainless steel (EN 1.4436).

Tubes

Heat exchangers for ducts and unit rooms are as standard in copper, but also in copper/nickel.

Header

Heat exchangers for ducts and unit rooms are as standard in steel or copper but also in copper/nickel design.

Fins

Ventilation heat exchangers are as standard in aluminium, but are as an option available in copper, corropaint, electrically tinned copper and Heresite treated aluminium. The fins are normally pleated to give maximum efficiency, but are also available in a plain design, which is recommended when dust occurs in the airflow and where a low air pressure drop is sought.

Solder

Hard (brazing) solder to be used on all soldered joints. Copper to copper is soldered with low content silver solder 2 %. Copper to steel is soldered with high content silver solder. The heat exchangers for steam and in copper/nickel designs are always soldered using silver solder. In aggressive environments a 55 % silver solder can be used.

CORROSION PROTECTION

AIMg: An aluminium fin with magnesium alloy designed for coastal environments with chloride content in the air where aluminium normally corrodes. Heat transfer is not affected relative to aluminium. On cooling and exhaust air heat exchangers a droplet eliminator is required from an air velocity of 2,9 m/s.

Corrodip: Protection used in highly corrosive environments, for example, wastewater treatment plants, paper mills, acidic environments and diaries. Epoxy painting on the finished heat exchanger, the whole fin surface including the header is protected. The paint thickness is $100 \ \mu m$. The paint is also available as foodstuff epoxy. Min. fin spacing is 4 mm, max. permitted temperature 60 °C. Impairs heat transfer by approx 20 % relative to aluminium. On cooling and exhaust air heat exchangers a droplet eliminator is required from an air velocity of 2,9 m/s.

Corropaint: Protection (epoxy coated aluminium with a thickness of 5 µm) that is used for moderately corrosive environments, for example dirty city air, laboratories and swimming halls, where it is believed that aluminium will be exposed to corrosion attack.

Max permitted temperature 120 °C. Impairs heat transfer by approx 10% relative to aluminium. On cooling and exhaust air heat exchangers a droplet eliminator is required from an air velocity of 1,6 m/s.

Copper electro tinned: A coating of tin is performed by electrolysis of a copper fin and/or tube. The corrsion protection is used in extremely corrosive marine environment, e.g. cruise ships and oil platforms. Heat transfer is not affected relative to aluminium. On cooling and exhaust air heat exchangers a droplet eliminator is required from an air velocity of 2,9 m/s.

E-coating: Protection used in corrosive environments, e.g. wastewater treatment plants, swimming halls with high chloride content (<100 ppm) and other acidic environments.

The products are manufactured according to good manufacturing practices for coatings, prepared, applied and treated in strict compliance to manufacturer specifications in according to technical data sheet conditions.

Heat exchanger is complete coating including the entire fin surface:

- epoxy paint with electroplating performed by immersion.
- top coat.
- retouching (with acrylic spray paint) if needed.

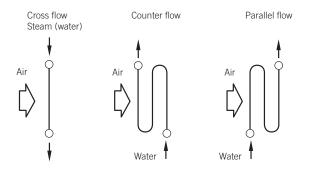
The color is black. Average paint thickness: 15-25 µm. Heat transfer is not affected. On cooling and exhaust air heat exchangers a droplet eliminator is required from an air velocity of 1,6 m/s.

Hydropaint: Protection (aluminium with 5µm thickness coating) that is used for moderately corrosive environments, e.g. polluted city air, where aluminium may be exposed to corrosion. The hydrophilic fins handle 3,5 m/s air velocity (on cooling and exhaust air heat exchangers) before a droplet eliminator is required. Max permitted temperature 120 °C. Affects heat transfer by approx 10 % relative to aluminium.

Copper: Copper is used in corrosive marine environment, e.g. coastal areas and cruise ships where aluminum AIMg may be affected by corrosion. Heat transfer is not affected relative to aluminium. On cooling and exhaust air heat exchangers a droplet eliminator is required from an air velocity of 2,9 m/s.

COUPLINGS, VELOCITIES AND OUTPUT STAGES

COUPLINGS


The tubes/coils can be connected so that the heating medium or refrigerant flows in different ways in relation to the airflow, see the figure below.

Cross flow coupling is used for condensing steam and on heat exchangers for heating with a small power output.

Counter flow coupling are common and are used on heat exchangers for cooling and heating with high output and with heat recovery. This coupling give the largest output.

Parallel flow coupling is sometimes used on heat exchangers for heating when it is necessary to prioritise the possibility of having a sensor for the freeze protection thermostat. In the event of an incorrectly installed heat exchanger for cooling where this coupling method has been used the output reduction can be up to 30 %.

In instances where the flow direction of the air or heat medium/ refrigerant is decisive for the function of the heat exchanger the direction is marked on the heat exchanger.

VELOCITIES

Standard velocities for heat exchangers suggested

Velocity	Cooling	Heating
Air velocity , m/s	2-31)	2-5
Fluid velocity, m/s	0,2 ²⁾ -2 ³⁾	0,2 2)-1,5 3)

1) A droplet eliminator should be fitted for velocities above 3 m/s.

- 2) Min. velocity depending on the fluid temperature.
- Max. velocity for copper tubes depending on the erosion risk.
 3 m/s should not be exceeded for heat exchanger with steel tubes in the coils.

OUTPUT STAGES

Heat exchangers for evaporating refrigerant can be delivered divided into one, two or several output stages depending on the height of the heat exchanger.

Two output stages (*see figure 1*) are normally coupled so that every other coil is coupled to output stage one and every other to output stage two ("interlaced coupling"). Connections and fluid pipes are equipped with marker tags that indicate the stage association. Three or more output stages (*see figure 2*) are normally divided vertically.

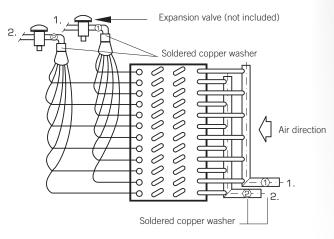


Figure 1. Two output stages with "interlace-coupling".

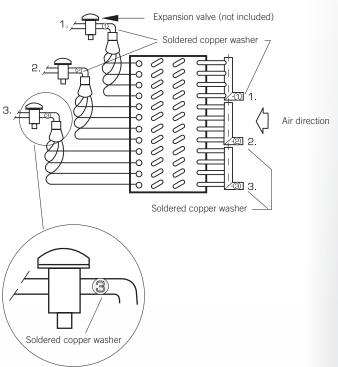


Figure 2. Two or three stages are normally divided vertically.

AIR -25 to +40 °C:

FORMULAS

AIR

FOR HEATING AND HOT WATER

Output: P (kW)= q (m³/s) $\cdot \Delta t$ (°C) $\cdot 1,2$

Airflow: q (m³/s)= $\frac{P (kW)}{\Delta t (^{\circ}C) \cdot 1,2}$

Temp. difference: Δt (°C) = $\frac{P (kW)}{q (m^3/s) \cdot 1,2}$

Efficiency: $n = \frac{t_u - t_i}{t_{i} - t_i}$

FOR COOLING

Output: P (kW)= q (m³/s) · Δi (kJ/kg) · 1,2

Airflow: q (m³/s) = $\frac{P (kW)}{\Delta i (kJ/kg) \cdot 1,2}$

Enthalpy diff: $\Delta i (kJ/kg) = \frac{P (kW)}{q (m^3/s) \cdot 1,2}$

Power requirement, fan: P(kW)= $\frac{q (m^3/s) \cdot \Delta p (Pa)}{\sim 0.65 (n) \cdot 1000}$

MIXTURE OF AIR

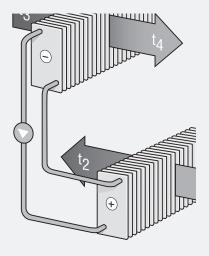
Mixing temperature:

t (°C)=
$$\frac{q_1(m^3/s) \cdot t_1(°C) + q_2(m^3/s) \cdot t_2(°C)}{q_{tot}}$$

WATER

Output: P (kW)=
$$q_r (I/s) \cdot \Delta t_r (^{\circ}C) \cdot 4,2$$

Water flow: $q_r (l/s) = \frac{P (kW)}{\Delta t_r (^{\circ}C) \cdot 4,2}$


Temperature difference: $\Delta t_r(^{\circ}C) = \frac{P(kW)}{q_r(1/s) \cdot 4,2}$

Power requirement, pump: P (kW)= $\frac{q_r(l/s) \cdot \Delta p_r(kPa)}{\sim 0.75 (n) \cdot 1000}$

HEAT RECOVERY

Temperature efficiency: $n_t =$

$$\frac{t_{2}-t_{1}}{t_{3}-t_{1}}$$

Optimal brine flow: $q_r(l/s) = \frac{q_1(m^3/s) + q_2(m^3/s)}{6}$

DMLieferant +7 (499) 990-05-50; +7 (800) 775-29-59 info@dmliefer.ru https://dmliefer.ru

HEAT EXCHANGER FOR DUCTS AND UNIT ROOM WALLS

CIRCULAR HEAT EXCHANGER FOR HEATING WATER

QJHD

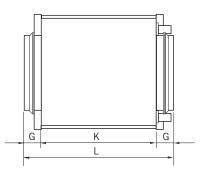
The heat exchanger QJHD is designed to heat air in ventilation systems with warm and hot water and can also be used to heat individual rooms (zones). Available in eight different standard sizes. Mounted on ducts or on the wall of the unit room.

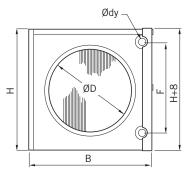
QJHD - circular heat exchanger with integrated header.

GENERAL

- Can be fitted in horizontal or vertical ducts with optional air direction.
- The casing is equipped with a circular sleeve which fits the circular duct standard according to SIS 82 72 06.
- There is a hatch on the heat exchanger connection side that can be opened for cleaning and inspection.
- Circular duct connections with rubber seals.
- The casing conforms to tightness class C according to EN 1751.

OPERATING DATA


- Max operating pressure 1,0 MPa at max operating temperature 150 °C.
- All heat exchangers are leakage tested using dry air under water.


MATERIAL

The heat exchanger is designed using copper tubes and aluminium fins. The casing is manufactured of aluzinc coated steel sheet. The connection pipes on the fluid side are of copper.

SIZES & CAPACITY

Available in 8 different standard sizes; 100, 125, 160, 200, 250, 315, 400, 500 (circular duct, mm). See the size table below. *Also see capacity tables on pages 11-13.*

QJHD (mm)	ØD	Ødy	В	Н	F	G	L	к	Weight (kg)
100	100	10	238	180	137	40	356	276	3,8
125	125	10	238	180	137	40	356	276	3,8
160	160	10	313	255	212	40	356	276	5,8
200	200	10	313	255	212	40	356	276	5,8
250	250	22	398	330	250	40	356	276	8,2
315	315	22	473	405	325	40	356	276	10,6
400	400	22	557	504	400	65	406	276	14,0
500	500	22	707	529	425	65	460	330	17,2

Size table indicating dimensions and weights for each duct size.

QJHD

	Wate	r temper	ature	i	n/out 80	0°C/60°	С	i	n/out 60)°C/40°	С	i	n/out 5	5°C/45°	С
	Air flow	Pressure drop air	Air in	Air out	Output	Water flow	Pressure drop water	Air out	Output	Water flow	Pressure drop water	Air out	Output	Water flow	Pressure drop water
	m³/h	Ра	°C	°C	kW	l/s	kPa	°C	kW	l/s	kPa	°C	kW	l/s	kPa
0	55	5	-15	31,3	1,0	0,01	<0,5	14,7	0,6	0,01	<0,5	21,5	0,8	0,02	1
100	55	5	-7,5	34,3	0,9	0,01	<0,5	17,2	0,5	0,01	<0,5	24,5	0,7	0,02	1
Δ	55	5	0	37,2	0,7	0,01	<0,5	22,9	0,5	0,01	<0,5	27,3	0,5	0,01	<0,5
QJHD	55	5	7,5	39,7	0,6	0,01	<0,5	26,1	0,4	0,01	<0,5	29,8	0,4	0,01	<0,5
Q	55	5	15	41,7	0,5	0,01	<0,5	29,8	0,3	0,01	<0,5	31,6	0,3	0,01	<0,5
≻	100	14	-15	24,3	1,5	0,02	1	11,5	1,0	0,01	<0,5	16,1	1,2	0,03	2
H	100	14	-7,5	28,1	1,3	0,02	1	14,7	0,8	0,01	<0,5	19,9	1,0	0,03	1
Ă	100	14	0	31,8	1,1	0,01	<0,5	17,4	0,6	0,01	<0,5	23,5	0,8	0,02	1
CAPACITY	100	14	7,5	35,3	1,0	0,01	<0,5	22,3	0,5	0,01	<0,5	26,9	0,7	0,02	1
0	100	14	15	38,6	0,8	0,01	<0,5	26,9	0,4	0,01	<0,5	30,1	0,5	0,01	<0,5
	145	26	-15	20,1	1,9	0,03	1	8,9	1,3	0,02	1	12,9	1,5	0,04	3
	145	26	-7,5	24,3	1,7	0,02	1	12,7	1,1	0,01	<0,5	17,0	1,3	0,03	2
	145	26	0	28,4	1,5	0,02	1	16,7	0,9	0,01	<0,5	21,1	1,1	0,03	1
	145	26	7,5	32,4	1,3	0,02	<0,5	20,0	0,6	0,01	<0,5	24,9	0,9	0,02	1
	145	26	15	36,2	1,1	0,01	<0,5	25,1	0,5	0,01	<0,5	28,7	0,7	0,02	1
											1				
	85	11	-15	26,2	1,3	0,02	1	12,6	0,9	0,01	<0,5	17,6	1,1	0,03	1
	85	11	-7,5	29,8	1,2	0,01	<0,5	15,4	0,7	0,01	<0,5	21,1	0,9	0,02	1

CAPACITY QJHD 125

85 11 0 33,3 1,0 0,01 <0,5 17,1 0,5 0,01 <0,5 24,5 0,8 85 11 7,5 36,6 0,9 0,01 <0,5 23,6 0,5 0,01 <0,5 27,8 0,6 15 <0,5 85 11 39,6 0,7 0,01 27,6 0,4 0,01 <0,5 30,7 0,5 150 28 -15 19,8 2,0 0,03 1 8,6 1,4 0,02 1 12,6 1,6 150 28 -7,5 24,0 0,02 1 12,5 1,1 0,01 <0,5 16,8 1,8 1,4 150 28 0 1,5 0,02 1 0,9 28,1 16,6 0,01 <0,5 20,8 1,1 150 28 7,5 32,1 1,3 0,02 1 20,0 0,7 0,01 <0,5 24,8 0,9 150 28 15 35,9 1,1 0,01 <0,5 25,0 0,5 0,01 <0,5 28,5 0,7 215 51 -15 2 2,5 0,03 6,0 1,7 0,02 9,6 2,0 15,9 1 1,4 215 51 -7,5 2,2 0,03 10,6 0,02 14,2 1,7 20,5 1 1 215 51 0 25,0 1,9 0,03 15,2 1,2 0,01 <0,5 18,6 1,4 1 215 51 7,5 29,3 1,7 0,02 1 19,4 0,9 0,01 <0,5 22,9 1,2 215 51 15 33,8 1,4 0,02 22,8 0,6 0,01 <0,5 27,1 0,9 1

CAPACITY QJHD 160

145	6	-15	34,5	2,7	0,03	4	21,3	2,0	0,03	2	23,3	2,1	0,05	9
145	6	-7,5	37,8	2,4	0,03	3	24,4	1,7	0,02	2	26,5	1,8	0,04	7
145	6	0	41,0	2,1	0,03	2	27,3	1,4	0,02	1	29,6	1,6	0,04	5
145	6	7,5	44,0	1,9	0,02	2	30,1	1,2	0,01	1	32,6	1,3	0,03	3
145	6	15	47,0	1,6	0,02	1	32,8	0,9	0,01	<0,5	35,5	1,0	0,03	2
250	15	-15	27,6	4,1	0,05	8	16,1	3,0	0,04	4	18,1	3,2	0,08	19
250	15	-7,5	31,5	3,6	0,04	6	19,9	2,5	0,03	3	21,9	2,7	0,07	14
250	15	0	35,2	3,2	0,04	5	23,5	2,1	0,03	2	25,6	2,3	0,06	10
250	15	7,5	38,9	2,8	0,03	4	27,0	1,7	0,02	2	29,2	1,9	0,05	7
250	15	15	42,5	2,4	0,03	3	30,7	1,3	0,02	1	32,7	1,5	0,04	5
355	27	-15	23,3	5,2	0,06	13	12,9	3,8	0,05	7	14,9	4,1	0,10	31
355	27	-7,5	27,5	4,6	0,06	10	17,0	3,2	0,04	5	19,0	3,5	0,09	23
355	27	0	31,7	4,1	0,05	8	21,0	2,7	0,03	4	23,1	3,0	0,07	17
355	27	7,5	35,7	3,5	0,04	6	35,2	2,2	0,03	3	27,0	2,4	0,06	12
355	27	15	39,7	3,0	0,04	4	29,3	1,7	0,02	2	30,9	1,9	0,05	7

0,02

0,01

0,01

0,04

0,03

0,03

0,02

0,02

0,05

0,04

0,04

0,03

0,02

1

<0,5

3 2

2

1

1

5

3

2

2

1

drop drop water

16

> 9 7 5

11

7

QJHD

	Wate	r tempei	rature	i	n/out 8(0°C/60°	С	i	n/out 6(0°C/40°	С	i	n/out 55	5°C/45	°C
	Air flow	Pressure drop air	Air in	Air out	Output	Water flow	Pressure drop water	Air out	Output	Water flow	Pressure drop water	Air out	Output	Water flow	Pre c w
	m³/h	Pa	°C	°C	kW	l/s	kPa	°C	kW	l/s	kPa	°C	kW	l/s	ŀ
~	225	12	-15	28,9	3,8	0,05	7	17,1	2,8	0,03	4	19,1	2,9	0,07	
8	225	12	-7,5	32,6	3,4	0,04	6	20,7	2,4	0,03	3	22,8	2,5	0,06	T
0	225	12	0	36,3	3,0	0,04	4	24,2	2,0	0,03	2	26,3	2,1	0,05	
보	225	12	7,5	39,9	2,6	0,03	3	27,5	1,6	0,02	1	29,8	1,8	0,04	T
g	225	12	15	43,3	2,2	0,03	2	31,1	1,2	0,01	1	33,2	1,4	0,03	
≥	390	32	-15	22,2	5,5	0,07	14	12,1	4,0	0,05	8	14,0	4,3	0,11	
5	390	32	-7,5	26,5	4,9	0,06	12	16,3	3,4	0,04	6	18,3	3,7	0,09	
Ă	390	32	0	30,8	4,3	0,05	9	20,4	2,9	0,04	4	22,4	3,2	0,08	
CAPACITY QJHD 200	390	32	7,5	34,9	3,8	0,05	7	24,7	2,4	0,03	3	26,5	2,6	0,06	
0	390	32	15	38,9	3,2	0,04	5	28,9	1,9	0,02	2	30,5	2,1	0,05	
	555	57	-15	18,1	7,0	0,09	23	9,1	5,1	0,06	13	11,0	5,5	0,13	
	555	57	-7,5	22,8	6,3	0,08	18	13,6	4,4	0,05	9	15,6	4,8	0,11	
	555	57	0	27,4	5,5	0,07	14	18,3	3,7	0,04	7	20,1	4,0	0,10	
	555	57	7,5	31,9	4,8	0,06	11	22,9	3,0	0,04	5	24,5	3,3	0,08	
	555	57	15	36,3	4,0	0,05	8	27,5	2,4	0,03	3	28,8	2,6	0,06	
	260	10	15	20.4	6.0	0.00	4	10.1	1.0	0.00	0	00.0	4.0	0.10	
	360 360	10 10	-15	30,4	6,2 5,6	0,08	4	18,1	4,6	0,06	2	20,2	4,8	0,12	
	360	10	-7,5 0	34,0 37,5	5,6 4,9	0,07	3	21,6 24,9	3,9 3,2	0,05	2	23,8 27,2	4,2 3,5	0,10	_
-	360	10	7,5	40,9	4,9	0,08	2	24,9	2,6	0,04	1	30,5	2,9	0,09	
50	360	10	15	40,9	4,2	0,05	1	31,3	2,0	0.03	<0,5	33,7	2,9	0,07	_
0	630	25	-15	23,5	9,3	0,04	8	13,0	6,7	0,03	4	15,0	7,2	0,00	
Ŧ	630	25	-7,5	27,7	8,2	0,11	6	17,1	5,7	0,08	3	19,0	6,2	0,15	-
g	630	25	0	31,8	7,2	0,10	5	21,0	4,8	0,07	2	23,2	5,3	0,13	
≻	630	25	7,5	35.8	6,3	0,03	4	25,1	3,9	0.05	2	27,1	4,3	0,13	
E	630	25	15	39.7	5,3	0.08	3	29,1	3,9	0,05	2	30.9	3,4	0,11	
CAPACITY QJHD 250	900	46	-15	19,4	11.8	0,07	13	29,1 9,9	8,6	0,04	7	11,9	9,3	0,08	
ÄF	900	40	-15	23,9	10,5	0,14	10	14,3	7,3	0,11	5	16,4	8,0	0,23	
0	900	46	0	28,4	9,2	0,13	8	18,8	6,1	0.08	4	20,8	6,7	0,15	
		10		20, 1	5,2	0,11	0	10,0	0,1	0,00		20,0	0,7	0,10	

900

900

46

46

7,5

15

32,7

37,0

8,0

6,8

0,10

0,08

6

4

23,3

27,7

5,0

3,9

0,06

0,05

3

2

25,0

29,2

5,6

4,4

0,13

0,11

CAPACITY QJHD 315

560	9	-15	30,8	9,8	0,12	4	18,6	7,2	0,09	2	20,6	7,6	0,18	9
560	9	-7,5	34,5	8,7	0,11	3	22,0	6,1	0,08	2	24,1	6,6	0,16	7
560	9	0	38,0	7,7	0,09	3	25,3	5,1	0,06	1	27,5	5,6	0,14	5
560	9	7,5	41,3	6,7	0,08	2	28,4	4,1	0,05	1	30,8	4,6	0,11	4
560	9	15	44,6	5,7	0,07	1	31,7	3,2	0,04	1	34,0	3,6	0,09	2
985	24	-15	23,9	14,6	0,18	9	13,4	10,7	0,13	5	15,3	11,4	0,28	20
985	24	-7,5	28,1	13,0	0,16	7	17,4	9,1	0,11	4	19,4	9,8	0,24	15
985	24	0	32,2	11,4	0,14	5	21,3	7,6	0,09	3	23,4	8,3	0,20	11
985	24	7,5	36,1	9,9	0,12	4	25,4	6,2	0,08	2	27,3	6,9	0,17	8
985	24	15	40,0	8,4	0,10	3	29,4	4,9	0,06	1	31,1	5,4	0,13	5
1410	45	-15	19,7	18,7	0,23	14	10,2	13,6	0,16	8	12,1	14,6	0,36	33
1410	45	-7,5	24,2	16,6	0,20	11	14,6	11,6	0,14	6	16,6	12,6	0,31	25
1410	45	0	28,7	14,6	0,18	9	19,1	9,7	0,12	4	21,0	10,7	0,26	18
1410	45	7,5	33,0	12,7	0,16	6	23,6	8,0	0,10	3	25,2	8,8	0,21	12
1410	45	15	37,3	10,8	0,13	5	28,0	6,3	0,08	2	29,4	7,0	0,17	8

QJHD

	Wate	r tempei	rature	i	n/out 8(0°C/60°	С	i	n/out 60	0°C/40°	С	i	n/out 5	5°C/45°	С
	Air flow	Pressure drop air	Air in	Air out	Output	Water flow	Pressure drop water	Air out	Output	Water flow	Pressure drop water	Air out	Output	Water flow	Pressure drop water
	m³/h	Ра	°C	°C	kW	l/s	kPa	°C	kW	l/s	kPa	°C	kW	l/s	kPa
_	900	11	-15	29,9	15,4	0,19	6	17,9	11,3	0,14	3	19,8	12,0	0,29	14
	900	11	-7,5	33,6	13,7	0,17	5	21,5	9,7	0,12	3	23,4	10,3	0,25	10
7	900	11	0	37,2	12,1	0,15	4	24,9	8,1	0,10	2	26,9	8,8	0,21	8
Ē	900	11	7,5	40,7	10,5	0,13	3	28,1	6,5	0,08	1	30,3	7,2	0,18	5
3	900	11	15	44,0	9,0	0,11	2	31,6	5,1	0,06	1	33,6	5,7	0,14	3
-	1590	29	-15	22,9	23,0	0,28	12	12,7	16,8	0,21	7	14,5	17,9	0,44	30
5	1590	29	-7,5	27,2	20,5	0,25	10	16,9	14,4	0,18	5	18,7	15,5	0,38	23
Ŧ	1590	29	0	31,4	18,0	0,22	8	20,9	12,0	0,14	4	22,8	13,1	0,32	16
Ŕ	1590	29	7,5	35,5	15,6	0,19	6	25,1	9,8	0,12	3	26,9	10,8	0,26	11
	1590	29	15	39,5	13,3	0,16	4	29,2	7,8	0,09	2	30,8	8,6	0,21	7
	2280	53	-15	18,7	29,4	0,36	20	9,6	21,4	0,26	11	11,4	23,0	0,56	48
	2280	53	-7,5	23,4	26,1	0,32	16	14,1	18,3	0,22	8	15,9	19,8	0,48	36
	2280	53	0	27,9	23,0	0,28	12	18,7	15,4	0,19	6	20,4	16,8	0,41	26
	2280	53	7,5	32,4	19,9	0,24	9	23,3	12,7	0,15	4	24,8	13,8	0,34	18
	2280	53	15	36,7	17,0	0,21	7	27,8	10,0	0,12	3	29,1	11,0	0,27	12
	1400	11	-15	30,2	24,2	0,30	7	18,2	17,8	0,22	4	20,0	18,7	0,46	17
	1400	11	-7,5	33,9	21,5	0,26	6	21,8	15,2	0,19	3	23,6	16,2	0,39	13
	1400	11	0	37,5	19,0	0,23	5	25,2	12,7	0,16	2	27,1	13,7	0,33	9
5	1400	11	7,5	40,9	16,5	0,20	4	28,4	10,3	0,13	2	30,5	11,3	0,28	7
Ď	1400	11	15	44,3	14,1	0,17	3	31,9	8,1	0,10	1	33,8	9,0	0,22	4
Ë	2450	28	-15	23,3	35,9	0,44	15	13,1	26,3	0,32	9	14,8	27,9	0,68	37
	2450	28	-7,5	27,6	31,9	0,39	12	17,2	22,5	0,27	6	19,0	24,1	0,59	28
	2450	28	0	31,7	28,1	0,34	10	21,2	18,8	0,23	5	23,1	20,4	0,49	20
	2450	28	7,5	35,8	24,4	0,30	7	25,3	15,4	0,19	3	27,1	16,9	0,41	14
כ	2450	28	15	39,8	20,8	0,26	5	29,5	12,1	0,15	2	31,0	13,4	0,33	9
Ļ.	3500	50	-15	19,2	45,7	0,56	24	10,0	33,4	0,41	14	11,7	35,7	0,87	58
כ	3500	50	-7,5	23,8	40,7	0,50	19	14,4	28,5	0,35	10	16,2	30,8	0,75	44
	3500	50	0	28,3	35,8	0,44	15	18,9	23,9	0,29	7	20,7	26,1	0,63	32
	3500	50	7,5	32,7	31,0	0,38	12	23,5	19,7	0,24	5	25,0	21,5	0,52	22

The tables give examples of capacities for each size. If sufficient output is not attained, go up a size.

9

28,0

15,6

0,19

3

17,1

29,3

0,41

14

0,33

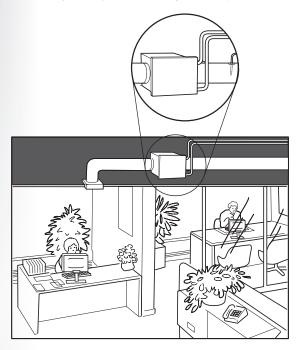
3500

50

15

37,0

1.7%


26,4

QJHD

INSTALLATION

On the fluid side pipes are connected using compression couplings (not supplied). The inlet is normally on the lower pipe to facilitate bleeding. The heater can be mounted on the air side either horizontally or vertically, with optional bleeding, *see the figure below*.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Output	kW
	Air velocity	m/s
	Air pressure drop	Ра
Water side:	Retur temperature	°C
	Rotal tompolataro	0
	Fluid flow	l/s
	1	0
	Fluid flow	l/s

CODE KEY

QJH_ – aaa

QJHD = Circular heat exchanger with integrated header. **aaa = Size** (circular duct, mm): 100, 125, 160, 200, 250, 315, 400, 500. **Number of tube rows:** 2

Fin spacing: 2,5 mm

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

CIRCULAR HEAT EXCHANGER FOR COOLING WATER

QJCD

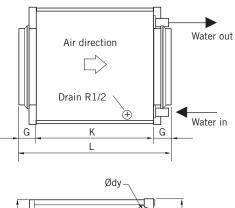
The heat exchanger QJCD is designed to cool air in ventilation systems with cooling water and can also be used cool the air in individual rooms (zones). Available in seven different standard sizes. Mounted on ducts or on the wall of the unit room.

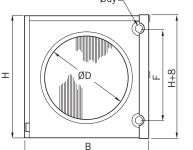
QJCD - circular heat exchanger with integrated header.

GENERAL

- Installed in horizontal duct.
- The casing is equipped with a circular sleeve which fits the circular duct standard according to SIS 82 72 06.
- There is a hatch on the heat exchanger connection side that can be opened for cleaning and inspection.
- Circular duct connections with rubber seals.
- Stainless drip collector for condensation water with drain connection (R1/2).
- The casing conforms to tightness class C according to EN 1751.

OPERATING DATA


- Operating pressure 1,0 MPa at max operating temperature 150 °C.
- All heat exchangers are leakage tested using dry air under water.


MATERIAL

The heat exchanger is designed using copper tubes and aluminium fins. The outer casing is manufactured of hot-dip galvanized steel sheet, with a stainless steel tray. The connection pipes on the fluid side are of copper.

SIZES & CAPACITY

Available in 7different standard sizes; 100, 125, 160, 200, 250, 315, 400 (circular duct, mm). *See the size table below. Also see the capacity tables on pages 16.*

QJCD (mm)	ØD	Ødy						к	Weight (kg)
100	100	10	251	180	100	40	356	276	4,4
125	125	10	326	255	175	40	356	276	6,8
160	160	10	326	255	175	40	356	276	6,7
200	200	22	411	330	250	40	356	276	9,7
250	250	22	486	405	325	40	356	276	13
315	315	22	560	504	400	40	356	276	16
400	400	22	710	529	425	65	460	330	21,4

Size table indicating dimensions and weights for each duct size.

QJCD

CAPACITY QJCD 100. WATER TEMPERATURE 6/12°C

Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Ра	°C	%RH	°C	kW	l/s	kPa
54	11	25	50	15,2	0,2	0,01	<0,5
54	11	30	45	17,2	0,3	0,01	1
100	30	25	50	16,9	0,4	0,01	1
100	30	30	45	19,5	0,5	0,02	1
145	55	25	50	17,9	0,4	0,02	1
145	55	30	45	20,4	0,7	0,03	2

CAPACITY QJCD 125. WATER TEMPERATURE 6/12°C

Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Ра	°C	%RH	°C	kW	l/s	kPa
85	5	25	50	13,9	0,4	0,02	2
85	5	30	45	15,1	0,7	0,03	4
150	13	25	50	15,0	0,7	0,03	5
150	13	30	45	16,7	1,0	0,04	9
215	23	25	50	15,7	1,0	0,04	8
215	23	30	45	17,8	1,4	0,06	15

CAPACITY QJCD 160. WATER TEMPERATURE 6/12°C

Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Ра	°C	%RH	°C	kW	l/s	kPa
145	12	25	50	14,9	0,7	0,03	4
145	12	30	45	16,6	1,0	0,04	9
250	29	25	50	16,1	1,1	0,04	9
250	29	30	45	18,2	1,5	0,06	18
355	52	25	50	16,8	1,4	0,06	15
355	52	30	45	19,3	2,0	0,08	30

CAPACITY QJCD 200. WATER TEMPERATURE 6/12°C

Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Ра	°C	%RH	°C	kW	l/s	kPa
225	9	25	50	14,8	1,1	0,04	2
225	9	30	45	16,2	1,6	0,06	4
390	21	25	50	15,8	1,7	0,07	5
390	21	30	45	17,8	2,5	0,10	10
555	38	25	50	16,6	2,2	0,09	8
555	38	30	45	18,9	3,2	0,13	16

CAPACITY QJCD 250. WATER TEMPERATURE 6/12°C

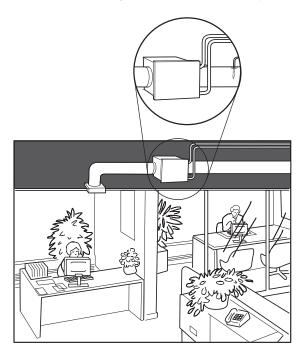
Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Pa	°C	%RH	°C	kW	l/s	kPa
360	8	25	50	14,6	1,8	0,07	3
360	8	30	45	16,1	2,6	0,10	5
630	21	25	50	15,8	2,8	0,11	6
630	21	30	45	17,8	4,0	0,16	11
900	37	25	50	16,5	3,7	0,14	9
900	37	30	45	18,9	5,2	0,21	18

CAPACITY QJCD 315. WATER TEMPERATURE 6/12°C

Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Ра	°C	%RH	°C	kW	l/s	kPa
560	9	25	50	14,6	2,8	0,11	3
560	9	30	45	16,2	4,0	0,16	7
985	22	25	50	15,8	4,4	0,17	8
985	22	30	45	17,9	6,2	0,25	15
1410	41	25	50	16,6	5,7	0,23	12
1410	41	30	45	19,0	8,1	0,32	24

CAPACITY QJCD 400. WATER TEMPERATURE 6/12°C

Air flow	Pressure drop	Air in	Air in	Air out	Output	Water flow	Pressure water
m³/h	Ра	°C	%RH	°C	kW	l/s	kPa
900	11	25	50	14,9	4,4	0,17	4
900	11	30	45	16,6	6,3	0,25	7
1590	26	25	50	16,1	6,8	0,27	8
1590	26	30	45	18,3	9,7	0,38	16
2280	50	25	50	16,9	8,8	0,35	13
2280	50	30	45	19,4	12,6	0,50	26


The tables give examples of capacities for each size. If sufficient output is not attained, go up a size. DMLieferant +7 (499) 990-05-50; +7 (800) 775-29-59 info@dmliefer.ru https://dmliefer.ru

HEAT EXCHANGER FOR DUCTS AND UNIT ROOM WALLS

QJCD

INSTALLATION

On the fluid side pipes are connected using compression couplings (not supplied). The inlet is normally on the lower pipe to facilitate bleeding. On the air side the cooler is connected horizontally with the air direction according to the fitted arrow, *see the figure below.*

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Output	kW
	Air velocity	m/s
	Air pressure drop	Pa
Water side:	Retur temperature	°C
Water side:	Retur temperature Fluid flow	°C I/s
Water side:	1	0
Water side:	Fluid flow	l/s

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

CODE KEY

QJC_ – aaa

QJCD = Circular heat exchanger with integrated header.

aaa = Size (circular duct, mm): 100, 125, 160, 200, 250, 315, 400.

Number of tube rows: 3 Fin spacing: 2,5 mm

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

HEAT EXCHANGERS FOR HEATING

QLHG, QLHF, QLHB, QLHH

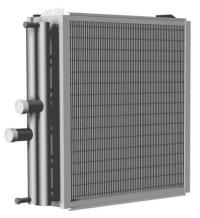
The heat exchangers QLHG, QLHF, QLHB and QLHH are designed for heating air with heat or fluid as the heat carrier. Mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.

GENERAL

- The design consists of a fin body, headers and casing.
- The heat exchanger is equipped with nipples for bleeding and drainage and at least one of the nipples can be equipped with a sensor for a freeze protection thermostat (does not apply to connection DN 15).
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- The casing conforms to tightness class B according to VVS AMA98/EN 1751.
- AMA-code: QFC.1.
- Materials for aggressive environments are available as standard.
- If a specific connection size is required, the following fluid flow restrictions apply:

Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

Operating data


- Max fluid velocity: 1,5 m/s in tubes.
- Normal velocity should be 3-4 m/s.
- Max air velocity: 5,0 m/s.
- For air flows up to 40 m³/s.
- Operating pressure:

Header	Max/Min temp	Max operating pressure
Fe	100/-20 °C	1,6 Mpa
Cu (DN 80)	110/0 °C	1,0 Mpa
Cu (DN 15-50)	110/0 °C	1,6 Mpa

• All heat exchangers are leakage tested using dry air under water.

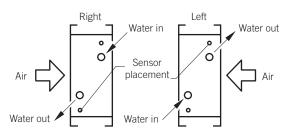
QLHH with flanged casing and integrated header.

QLHG with slip-clamp casing and exposed header.

MATERIAL & SIZE (see the code key for more info) The heat exchangers are normally designed using copper tubes and aluminium fins and casing of hot-dip galvanized steel sheet. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections. Standard sizes are from 200 x 200 mm to 3500 x 2400 mm.

Materials for aggressive environments are available, see page 6.

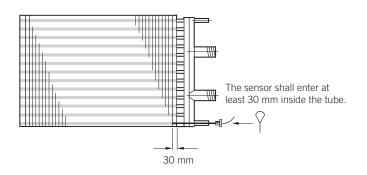
DIMENSIONING VIA COILS


Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out Output Air velocity Air pressure drop	°C kW m/s Pa
Water side:	Return temperature Fluid flow Fluid velocity Fluid pressure drop	°C I/s m/s kPa

QLHG, QLHF, QLHB, QLHH

INSTALLATION


The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. If the heat exchanger is ordered without specifying right/left-hand design, a right-hand design is delivered. Heat exchangers for heating are reversible. The system must be fully bled to give optimal performance.

Counter flow coupling.

FREEZE PROTECTION

At least one of the heat exchanger's nipples can be equipped with a sensor for a freeze protection thermostat. If, after draining, the heat exchanger is exposed to a risk of freezing it should be blown through with air to ensure that all water has been removed.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

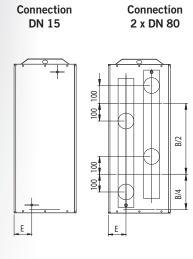
Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

CODE KEY

QLH_- - aaa - bbb - cc - dd - ee - f - g

QLHG = Slip-clamp casing with exposed header. QLHF = Flanged casing with exposed header. QLHB = Slip-clamp casing with integrated header. QLHH = Flanged casing with integrated header.

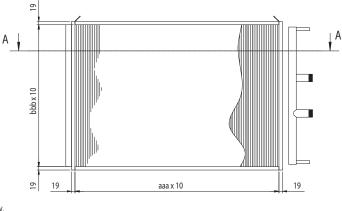
aaa = Duct width (cm) 020-350 bbb = Duct height (cm) 020-240 cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12 dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60 ee = Number of fluid paths 02, 04, 06, 08, 10, etc. f = Connection side 1=right, 2=left g = Material


g=Material	Casing	Header	Fin
A	Galv	Steel (conn 15+25=Cu)	AI
В	Galv	Cu	Cu
D	Galv	Cu	AI
E	Galv	Steel (conn 15+25=Cu)	Corropaint
F	Galv	Cu	Cu tinned
K	Galv	Cu	Corropaint
L	SS	Steel (conn 15+25=Cu)	AI
M	SS	Cu	Cu
N	SS	Cu	AI
0	SS	Steel (conn 15+25=Cu)	Corropaint
Р	SS	Cu	Cu tinned
Q	SS	Steel (conn 15+25=Cu)	Al corrodip
R	SS	Cu	Corropaint

Galv=galvanized steel sheet, SS=stainless steel sheet Cu=copper, Al=aluminium

QLHG, QLHF, QLHB, QLHH

DIMENSION DRAWING QLHG: Slip-clamp casing with exposed header.


Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

DN 25, 32, 50, 80

*) 33 mm DN 50, 1 tuberow.

Connection

47

All dimensions in mm unless otherwise indicated.

B=bbb x 10			
bbb (cm)	H (mm)		
<040 ≥040	60 100		

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M)) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

No. of rows (cc)	C (mm)
01	150
02	150
03	150
04	300
06	350
08	400
10	460
12	520

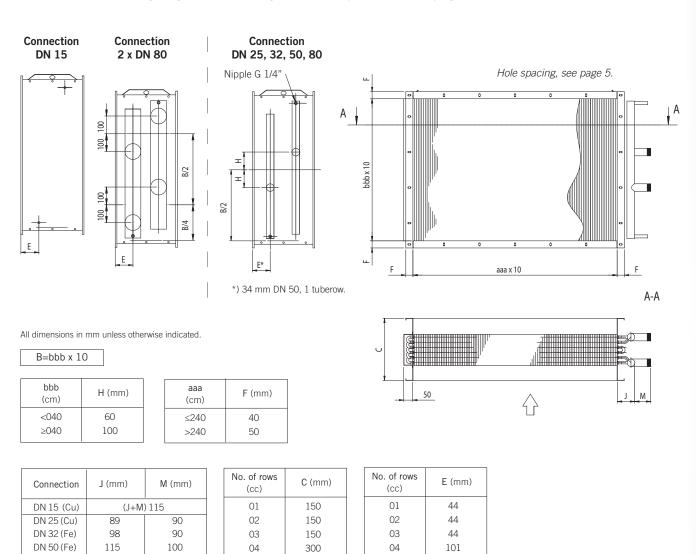
No. of rows (cc)	E (mm)
01	43
02	43
03	43
04	100
06	100
08	97
10	97
12	100

50

A-A

М

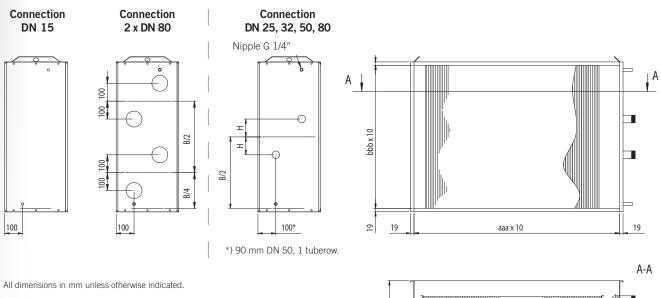
22


QLHG, QLHF, QLHB, QLHH

DIMENSION DRAWING QLHF: Flanged casing with exposed header.

DN 80 (Fe)

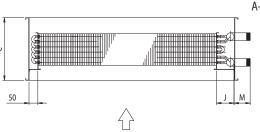
2 x DN 80 (Fe)


Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

QLHG, QLHF, QLHB, QLHH

DIMENSION DRAWING QLHB: Slip-clamp casing with integrated header.

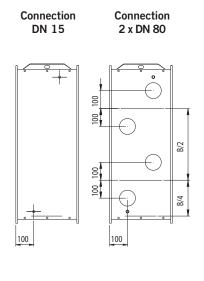
Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

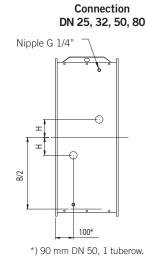


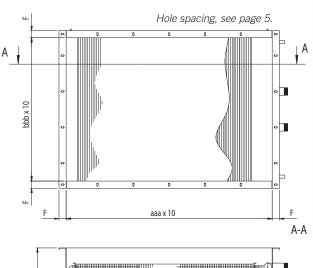
B=bbb x 10

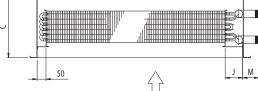
H (mm)
60 100

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115	
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110


No. of rows (cc)	C (mm)
01	300
02	300
03	300
04	300
06	350
08	400
10	460
12	520




QLHG, QLHF, QLHB, QLHH


DIMENSION DRAWING QLHH: Flanged casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

B=bbb x 10

bbb (cm)	H (mm)	aaa (cm)	F (mm)
<040	60	≤240	40
≥040	100	>240	50

Connection	J (mm)	M (mm)	No. of rows (cc)	C (mm)
DN 15 (Cu)	(J+M) 115	01	300
DN 25 (Cu)	89	90	02	300
DN 32 (Fe)	98	90	03	300
DN 50 (Fe)	115	100	04	300
		110	06	350
DN 80 (Fe)	144		08	400
2 x DN 80 (Fe)	144	110	10	460
			12	520

HEAT EXCHANGERS FOR COOLING

QLCG, QLCF, QLCB, QLCH

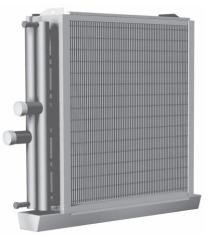
The heat exchangers QLCG, QLCF, QLCB and QLCH are designed for cooling of air with fluid and are mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive PED 2017/68/EC.

GENERAL

- The design consists of a fin body, headers and casing.
- The heat exchanger is equipped with nipples for bleeding and drainage and at least one of the nipples can be equipped with a sensor for a freeze protection thermostat (does not apply to connection DN 15).
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- As standard the drip tray is made of stainless steel with vertical drainage, but can be ordered with horizontal drainage (QLAZ-30).
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- The casing conforms to tightness class B according to VVS AMA98/EN 1751.
- AMA-code QFC.21.
- Materials for aggressive environments are available as standard.
- If a specific connection size is required, the following fluid flow restrictions apply:

Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

OPERATING DATA


- Max fluid velocity: 2,0 m/s in tubes.
- Normal air velocity should be 2-3 m/s.
- Max air velocity without droplet eliminator: 2,9 m/s.
- Max air velocity with droplet eliminator: 5,0 m/s. ٠
- At duct pressures above 300 Pa an integrated header is recommended. ٠
- For air flows up to 40 m³/s.
- Operating pressure:

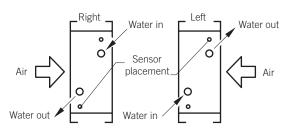
Header	Max/Min temp	Max operating pressure
Fe	100/-20 °C	1,6 Mpa
Cu (DN 80)	110/0 °C	1,0 Mpa
Cu (DN 15-50)	110/0 °C	1,6 Mpa

• All heat exchangers are leakage tested using dry air under water.

QLCH with flanged casing and integrated header.

QLCG with slip-clamp casing and exposed header.

MATERIAL & SIZE (see the code key for more info) The heat exchangers are normally designed using copper tubes and aluminium fins. Casing of hot-dip galvanized steel sheet with drip tray of stainless steel sheet. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper


with brass connections. Standard sizes are from 200x200 mm to 3500x2400mm. Materials for aggressive environments are available, see page 6.

QLCG, QLCF, QLCB, QLCH

INSTALLATION

The heat exchanger is equipped with signs (label) that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.

Counter flow coupling.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out Output Air velocity Air pressure drop	°C kW m/s Pa
Water side:	Return temperature Fluid flow Fluid velocity Fluid pressure drop	°C I/s m/s kPa

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

CODE KEY

QLC_- – aaa – bbb – cc – dd – ee – f – g

QLCG = Slip-clamp casing with exposed header. QLCF = Flanged casing with exposed header. QLCB = Slip-clamp casing with integrated header. QLCH = Flanged casing with integrated header

aaa = Duct width (cm) 020-350

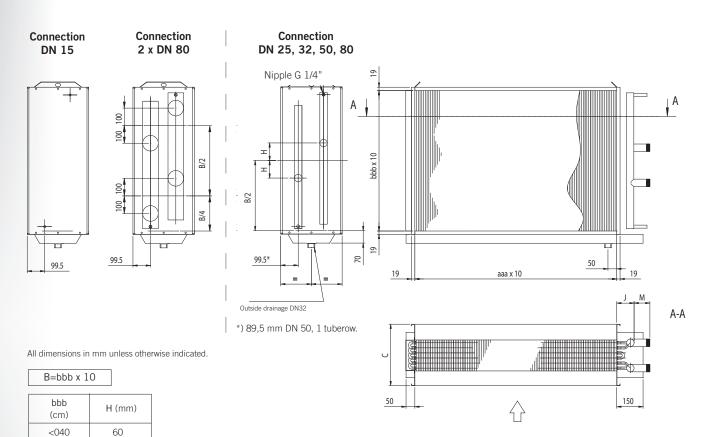
bbb = Duct height (cm) 020-240

cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12

dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f = Connection side 1=right, 2=left


g = Material

Material	Casing	Header	Fin
A	Galv	Steel (conn15+25=Cu)	AI
В	Galv	Cu	Cu
D	Galv	Cu	AI
E	Galv	Steel (conn 15+25=Cu)	Corropaint
F	Galv	Cu	Cu tinned
K	Galv	Cu	Corropaint
L	SS	Steel (conn 15+25=Cu)	AI
M	SS	Cu	Cu
N	SS	Cu	AI
0	SS	Steel (conn 15+25=Cu)	Corropaint
Р	SS	Cu	Cu tinned
Q	SS	Steel (conn 15+25=Cu)	Al corrodip
R	SS	Cu	Corropaint

Galv=galvanized steel sheet, SS=stainless steel sheet Cu=copper, Al=aluminium QLCG, QLCF, QLCB, QLCH

DIMENSION DRAWING QLCG: Slip-clamp casing with exposed header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

≥040	100	
Ċ		
Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
		100
	Connection DN 15 (Cu) DN 25 (Cu) DN 32 (Fe)	Connection J (mm) DN 15 (Cu) (J+M) DN 25 (Cu) 89

144

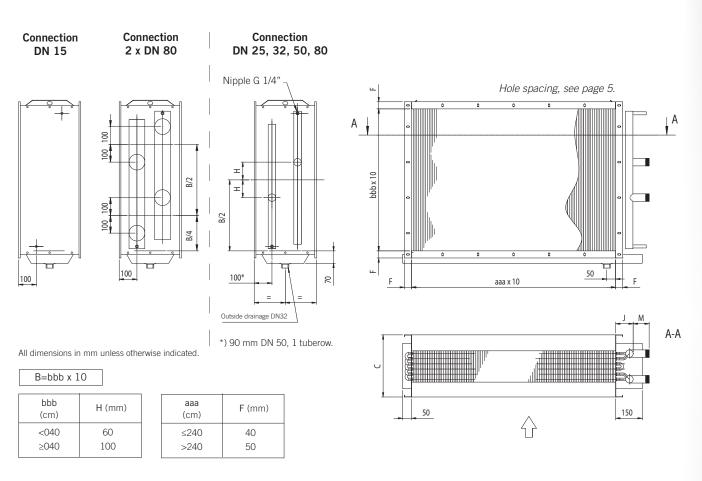
144

110

110

DN 80 (Fe)

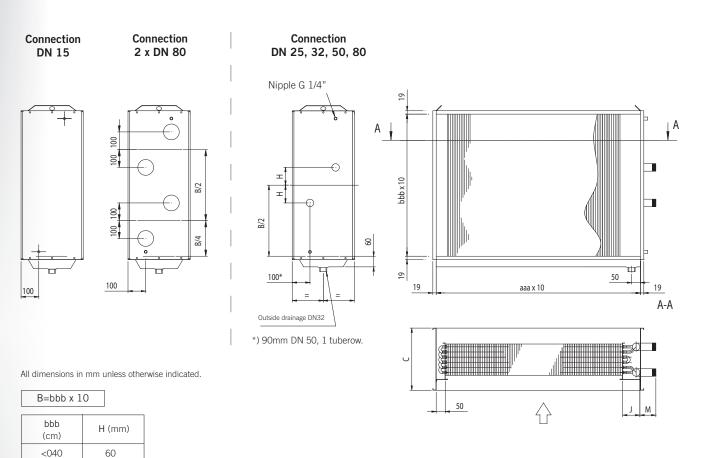
2 x DN 80 (Fe)


No. of rows (cc)	Droplet elimina WITHOUT	tor C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

QLCG, QLCF, QLCB, QLCH

DIMENSION DRAWING QLCF: Flanged casing with exposed header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.


Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

No. of rows (cc)	Droplet elimina WITHOUT	tor C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

QLCG, QLCF, QLCB, QLCH

DIMENSION DRAWING QLCB: Slip-clamp casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

100

≥040

No. of rows (cc)	Droplet eliminator WITHOUT	C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

QLCG, QLCF, QLCB, QLCH

DIMENSION DRAWING QLCH: Flanged casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

No. of rows (cc)	Droplet eliminator WITHOUT	r C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

HEAT EXCHANGER FOR HEAT RECOVERY - SUPPLY AIR

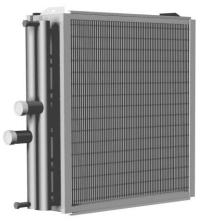
The heat exchangers Q(L,F)TG, Q(L,F)TF, Q(L,F)TB and Q(L,F)TH are designed for heating the supply air, via a circulating antifreeze fluid, which recovers energy from the exhaust air. Mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive PED 2014/68/EC.

GENERAL

- The design consists of a fin body, headers and casing.
- QL= 1/2" tubes with pleated fins QF= 1/2" tubes with plain fins
- The header is equipped with plugged nipples for bleeding and draining. The plug is designed as a manual bleeding valve.
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- The casing conforms to tightness class B according to VVS AMA98/EN 1751.
- AMA-code QFC.
- Materials for aggressive environments are available as.
- If a specific connection size is required, the following fluid flow restrictions apply:

Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

OPERATING DATA


- Max fluid velocity: 2,0 m/s in tubes.
- Normal air velocity should be 2-3 m/s.
- Max air velocity 5,0 m/s.
- At duct pressures above 300 Pa an integrated header is recommended.
- For air flows up to 40 m³/s.
- Operating pressure:

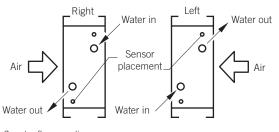
Header	Max/Min temp	Max operating pressure
Fe	100/-20 °C	1,6 Mpa
Cu (DN 80)	110/0 °C	1,0 Mpa
Cu (DN 15-50)	110/0 °C	1,6 Mpa

• All heat exchangers are leakage tested using dry air under water.

QLTH with flanged casing and integrated header.

QLTG with slip-clamp casing and exposed header.

MATERIAL & SIZE (see the code key for more info)

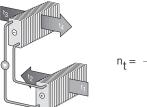

The casing is made of hot-dip galvanized steel sheet. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections. Standard sizes are from $200 \times 200 \text{ mm}$ to $3500 \times 2400 \text{ mm}$.

Materials for aggressive environments are available, see page 6.

Q(L,F)TG, Q(L,F)TF, Q(L,F)TB, Q(L,F)TH - ECOTERM®

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.



Counter flow coupling.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Temperature efficiency %:

Air temperature out	°C
Output	kW
Air velocity	m/s
Air pressure drop	Ра
Return temperature	°C
Fluid flow	l/s
Fluid velocity	m/s
Fluid pressure drop	kPa
	Output Air velocity Air pressure drop Return temperature Fluid flow Fluid velocity

ANTI-FREEZE (BRINES)

Glycols, ethanols, salt solutions, oils, etc. In order to gain good performance it is extremely important that the system is filled with the same brine solution and concentration that it is designed for. Different types of brine are included in the calculation program Coils, which gives the correct pressure drop depending on the brine and concentration. Examples of normal mixtures of ethylene glycol are 20-35% and propylene glycol 25-35%, depending which temperature the system works at. A concentration of 20% could eliminate frost tension in the heat exchanger.

CODE KEY

$Q(L,F)T_-$ aaa - bbb - cc - dd - ee - f - g

$$\begin{split} & Q(L,F)TG = Slip\text{-}clamp \ casing \ with \ exposed \ header. \\ & Q(L,F)TF = Flanged \ casing \ with \ exposed \ header. \\ & Q(L,F)TB = Slip\text{-}clamp \ casing \ with \ integrated \ header. \\ & Q(L,F)TH = Flanged \ casing \ with \ integrated \ header. \end{split}$$

QL= 1/2" tubes with pleated fins QF= 1/2" tubes with plain fins

aaa = Duct width (cm) 020-350

bbb = Duct eight (cm) 020-240

cc = Number of tube rows 01, 02, 03, 04, 06, 08, 10, 12, 14, 16 dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f = Connection side 1=right, 2=left

g = Material

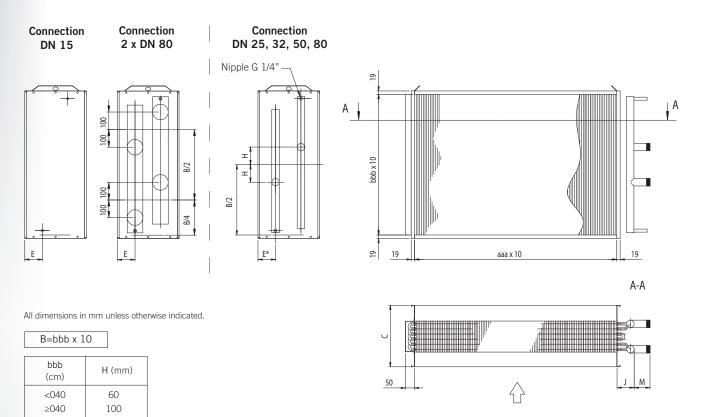
Material	Casing	Header	Fin
A	Galv	Steel (conn 15+25=Cu)	AI
В	Galv	Cu	Cu
D	Galv	Cu	AI
E	Galv	Steel (conn 15+25=Cu)	Corropaint
F	Galv	Cu	Cu tinned
K	Galv	Cu	Corropaint
L	SS	Steel (conn 15+25=Cu)	AI
М	SS	Cu	Cu
N	SS	Cu	AI
0	SS	Steel (conn 15+25=Cu)	Corropaint
Р	SS	Cu	Cu tinned
Q	SS	Steel (conn 15+25=Cu)	Al corrodip
R	SS	Cu	Corropaint

Galv=galvanized steel sheet, SS= stainless steel sheet, Cu=copper, Al=aluminium

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

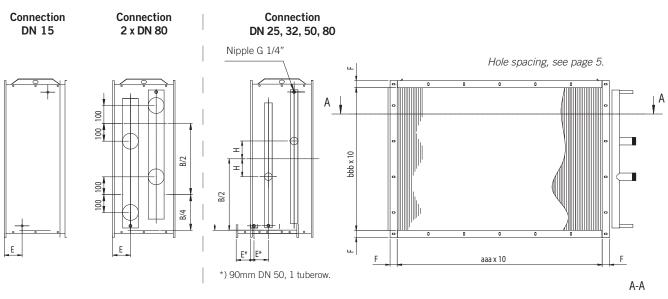

Operating and maintenance instructions are available via the production selection program Coils or from our website.

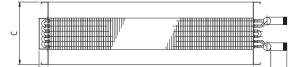
Q(L,F)TG, Q(L,F)TF, Q(L,F)TB, Q(L,F)TH - ECOTERM®

DIMENSION DRAWING Q(L,F)TG: Slip-clamp casing with exposed header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110


No. of rows (cc)	C (mm)
01	300
02	300
03	300
04	300
06	350
08	400
10	460
12	520


No. of rows (cc)	E (mm)
01	100
02	100
03	100
04	100
06	100
08	97
10	97
12	100

Q(L,F)TG, Q(L,F)TF, Q(L,F)TB, Q(L,F)TH - ECOTERM®

DIMENSION DRAWING Q(L,F)TF: Flanged casing with exposed header.

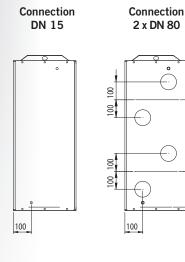
Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

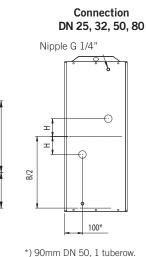
All dimensions in mm unless otherwise indicated.

B=bbb x 10

bbb (cm)	H (mm)	aaa (cm)	F (mm)
<040	60	≤240	40
≥040	100	>240	50

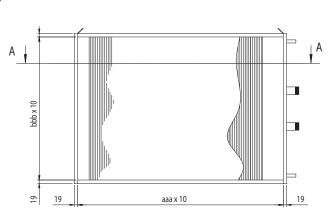
Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115	
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110


No. of rows (cc)	C (mm)	
01	300	
02	300	
03	300	
04	300	
06	350	
08	400	
10	460	
12	520	


No. of rows (cc)	E (mm)
01	100
02	100
03	100
04	100
06	100
08	98
10	98
12	100

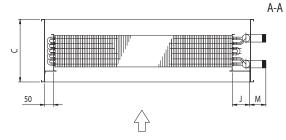
Q(L,F)TG, Q(L,F)TF, Q(L,F)TB, Q(L,F)TH - ECOTERM®

DIMENSION DRAWING Q(L,F)TB: Slip-clamp casing with integrated header.


Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

22

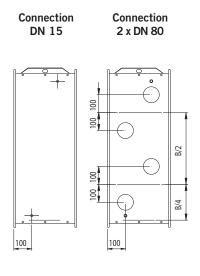
B/4

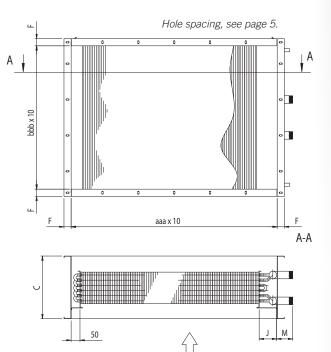

All dimensions in mm unless otherwise indicated.

B=bbb x 10

bbb (cm)	H (mm)
<040	60
≥040	100

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115	
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110


No. of rows (cc)	C (mm)
01	300
02	300
03	300
04	300
06	350
08	400
10	460
12	520


Q(L,F)TG, Q(L,F)TF, Q(L,F)TB, Q(L,F)TH - ECOTERM®

DIMENSION DRAWING Q(L,F)TH: Flanged casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

B=bbb x 10

		_		
bbb (cm)	H (mm)		aaa (cm)	F (mi
<040 ≥040	60 100		≤240 >240	40 50

Connection	J (mm)	M (mm)	No. of rows (cc)	
DN 15 (Cu)	(J+M)) 115	01	
DN 25 (Cu)	89	90	02	
DN 32 (Fe)	98	90	03	
DN 50 (Fe)	115	100	04	
DN 80 (Fe)	144	110	06	
2 x DN 80 (Fe)	144	110	08	
			10	

No. of rows (cc)	C (mm)
01	300
02	300
03	300
04	300
06	350
08	400
10	460
12	520

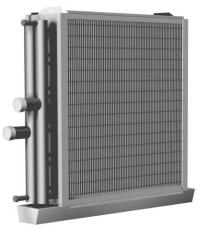
(mm)

HEAT EXCHANGER FOR HEAT RECOVERY - EXHAUST AIR

The heat exchangers Q(L,F)FG, Q(L,F)FF, Q(L,F)FB and Q(L,F)FH are designed for heating the exhaust air, via a circulating antifreeze fluid, which recovers energy from the supply air. Mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive PED 2014/68/EC.

GENERAL

- The design consists of a fin body, headers and casing.
- QL= 1/2" tubes with pleated fins QF= 1/2" tubes with plain fins
- The header is equipped with plugged nipples for bleeding and draining. The plug is designed as a manual bleeding valve.
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- As standard the drip tray is made of stainless steel with vertical drainage, but can be ordered with horizontal drainage (QLAZ-30).
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- The casing conforms to tightness class B according to VVS AMA98/EN 1751.
- AMA-code QFC.
- Materials for aggressive environments are available as standard.
- If a specific connection size is required, the following fluid flow restrictions apply:


Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

OPERATING DATA

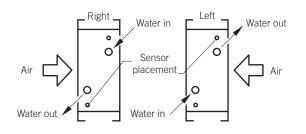
- Max air velocity: 1,5 m/s in tubes.
- Normal air velocity should be 2-3 m/s.
- Max air velocity without droplet eliminator: 2,9 m/s.
- Max air velocity with droplet eliminator: 5,0 m/s.
- At duct pressures above 300 Pa an integrated header is recommended.
- For air flows up to 40 m³/s.

QLFH with flanged casing and integrated header.

QLFG with slip-clamp casing and exposed header.

• Operating pressure:

Header	Max/Min temp	Max operating pressure
Fe	100/-20 °C	1,6 Mpa
Cu (DN 80)	110/0 °C	1,0 Mpa
Cu (DN 15-50)	110/0 °C	1,6 Mpa

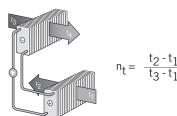

• All heat exchangers are leakage tested using dry air under water.

MATERIAL & SIZE (see the code key for more info) The heat exchangers are designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. Stainless steel drip tray. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections. Standard sizes are from 200 x 200 mm to 3500 x 2400 mm. Materials for aggressive environments are available, *see page 6*.

Q(L,F)FG, Q(L,F)FF, Q(L,F)FB, Q(L,F)FH - ECOTERM®

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.



Counter flow coupling.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Temperature efficiency %:

Air side:	Air temperature out Output Air velocity Air pressure drop	°C kW m/s Pa
Water side:	Return temperature Fluid flow Fluid velocity Fluid pressure drop	°C I/s m/s kPa

ANTI-FREEZE (BRINES)

Glycols, ethanols, salt solutions, oils, etc. In order to gain good performance it is extremely important that the system is filled with the same brine solution and concentration that it is designed for. Different types of brine are included in the calculation program Coils, which gives the correct pressure drop depending on the brine and concentration. Examples of normal mixtures of ethylene glycol are 20-35% and propylene glycol 25-35%, depending which temperature the system works at. A concentration of 20% could eliminate frost tension in the heat exchanger.

CODE KEY

$Q(L,F)F_-$ aaa - bbb - cc - dd - ee - f - g

 $\begin{aligned} & Q(L,F)FG = Slip-clamp \ casing \ with \ exposed \ header. \\ & Q(L,F)FF = Flanged \ casing \ with \ exposed \ header. \\ & Q(L,F)FB = Slip-clamp \ casing \ with \ integrated \ header. \\ & Q(L,F)FH = Flanged \ casing \ with \ integrated \ header. \end{aligned}$

QL= 1/2" tubes with pleated fins QF= 1/2" tubes with plain fins

aaa = Duct width (cm) 020-350

bbb = Duct eight (cm) 020-240

- $\textbf{cc} = \textbf{Number of tube rows} \hspace{0.1cm} 01, \hspace{0.1cm} 02, \hspace{0.1cm} 03, \hspace{0.1cm} 04, \hspace{0.1cm} 06, \hspace{0.1cm} 08, \hspace{0.1cm} 10, \hspace{0.1cm} 12, \hspace{0.1cm} 14, \hspace{0.1cm} 16 \end{array}$
- dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f = Connection side 1=right, 2=left

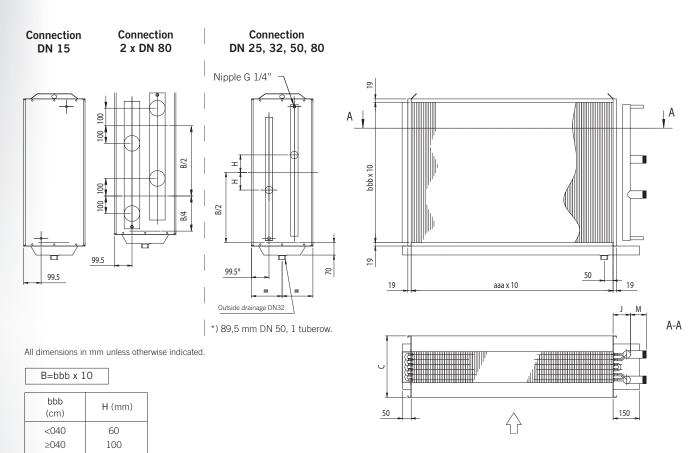
g = Material

Material	Casing	Header	Fin
A	Galv	Steel (conn 15+25=Cu)	AI
В	Galv	Cu	Cu
D	Galv	Cu	AI
E	Galv	Steel (conn15+25=Cu)	Corropaint
F	Galv	Cu	Cu tinned
K	Galv	Cu	Corropaint
L	SS	Steel (conn15+25=Cu)	AI
M	SS	Cu	Cu
N	SS	Cu	AI
0	SS	Steel (conn 15+25=Cu)	Corropaint
Р	SS	Cu	Cu tinned
Q	SS	Steel (conn15+25=Cu)	Al corrodip
R	SS	Cu	Corropaint

Galv=galvanized steel sheet, SS= stainless steel sheet, Cu=copper, Al=aluminium

ACCESSORIES

Additional accessories are available, see pages 94-96.


MAINTENANCE

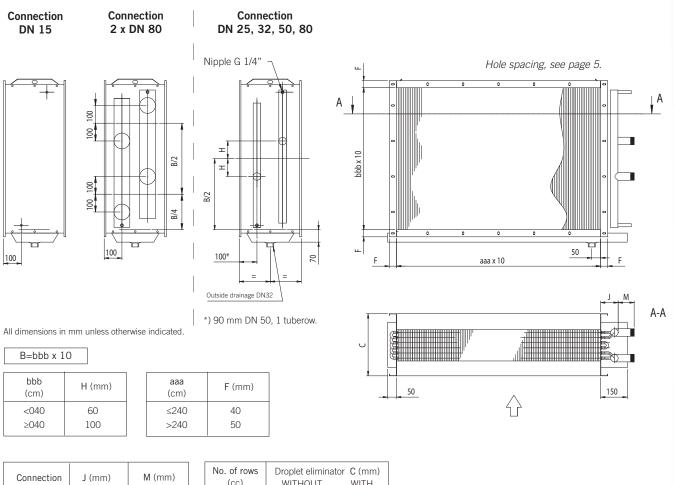
Operating and maintenance instructions are available via the production selection program or from our website.

Q(L,F)FG, Q(L,F)FF, Q(L,F)FB, Q(L,F)FH - ECOTERM®

DIMENSION DRAWING Q(L,F) FG: Slip-clamp casing with exposed header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

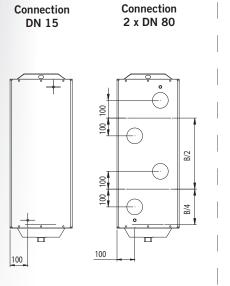
Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M)) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

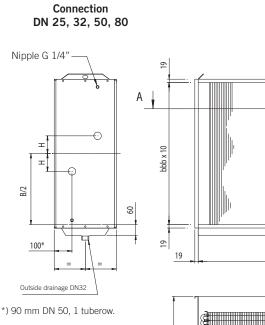

No. of rows (cc)	C (mm)	C with droplet eliminator
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

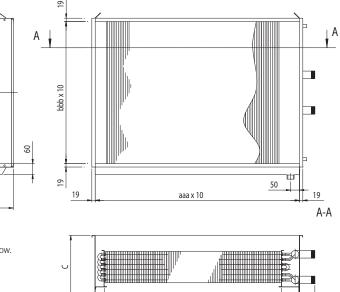
Q(L,F)FG, Q(L,F)FF, Q(L,F)FB, Q(L,F)FH - ECOTERM®

DIMENSION DRAWING Q(L,F) FF: Flanged casing with exposed header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.


Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115	
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110


No. of rows (cc)	Droplet eliminato WITHOUT	or C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580


Q(L,F)FG, Q(L,F)FF, Q(L,F)FB, Q(L,F)FH - ECOTERM®

DIMENSION DRAWING Q(L,F) FB: Slip-clamp casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils

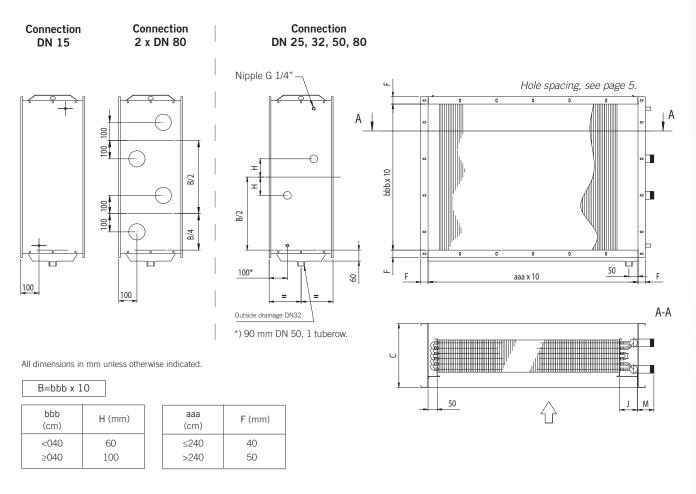
 \bigcirc

50

All dimensions in mm unless otherwise indicated.

B=bbb x 10

bbb (cm)	H (mm)
<040 >040	60 100
2040	100


Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

No. of rows (cc)	Droplet elimi WITHOUT	nator C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

Q(L,F)FG, Q(L,F)FF, Q(L,F)FB, Q(L,F)FH - ECOTERM®

DIMENSION DRAWING Q(L,F) FH: Flanged casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils

Connection	J (mm)	M (mm)
DN 15 (Cu)	(J+M) 115	
DN 25 (Cu)	89	90
DN 32 (Fe)	98	90
DN 50 (Fe)	115	100
DN 80 (Fe)	144	110
2 x DN 80 (Fe)	144	110

No. of rows (cc)	Droplet eliminator C (mm WITHOUT WITH	
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

HEAT EXCHANGERS FOR EVAPORATING REFRIGERANT (DX)

The heat exchangers QLEG, QLEF, QLEB and QLEH are designed for cooling of air with an evaporating medium and designed for horizontal air flow. Mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive 2014/68/EC.

GENERAL

- The design consists of a fin body, headers/distributor and casing.
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- The heat exchangers are designed with a distributor for incoming refrigerant and a header for outgoing.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, maximum output.
- As standard the drip tray is made of stainless steel with vertical drainage, but can be ordered with horizontal drainage (QLAZ-30).
- Available in several output stages.
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- The casing conforms to tightness class B according to VVS AMA98/EN 1751.
- AMA-code QFC.22.
- Materials for aggressive environments are available as standard.
- For the greatest cleanliness the heat exchangers are shield gas soldered and filled with nitrogen gas before delivery.

OPERATING DATA

- Normal air velocity should be 2-3 m/s.
- Max air velocity without droplet eliminator: 2,9 m/s.
- Max air velocity with droplet eliminator: 5,0 m/s.
- At duct pressures above 300 Pa an integrated header is recommended.
- For air flows up to 40 m³/s.
- Max operating pressure 2,2 MPa at max operating temperature 100 °C.
- All heat exchangers are leakage tested using dry air under water.
- If reversible operation or hot-gas defrosting are used, the max. operating pressure should be observed.

QLEG with slip-clamp casing and exposed header.

QLEB with slip-clamp casing and integrated header

QLEF with flanged casing and exposed header.

QLEH with flanged casing and integrated header.

MATERIAL & SIZE (see the code key for more info) The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet with drip tray of stainless steel. The header and distributor pipes are made of copper while the distributor is made of brass. Standard sizes are from 200 x 200 mm to 3500 x 2400 mm. Materials for aggressive environments are available, *see page 6.*

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following:

Air side:		Air temperature out	°C
		Output	kW
		Air velocity	m/s
		Air pressure drop wet and dry	Pa
		Outgoing air humidity	%
		Condensate	g/s
	Refrigerant side:	Refrigerant pressure drop	kPa

QLEG, QLEF, QLEB, QLEH

OUTPUT STAGES

Heat exchangers for evaporating refrigerant can be delivered divided into one, two or several output stages depending on the height of the heat exchanger. Heat exchangers with two output stages are normally coupled so that every other coil is coupled to output stage 1 and every other to output stage 2 ("interlaced coupling"), *see figure 1.* Connections and fluid pipes are equipped with copper washers that indicate the stage association. Heat exchangers with three or more output stages are normally divided vertically, *see figure 2.*

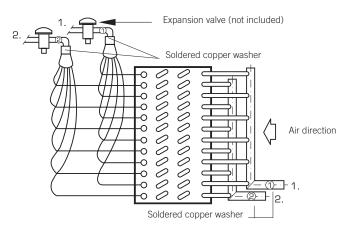


Figure 1. Two output stages with "interlace coupling".

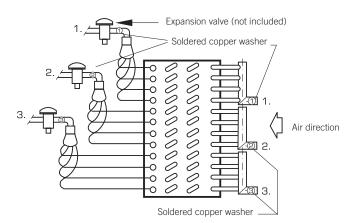


Figure 2. Three or more output stages are normally divided vertically.

CODE KEY

QLE_- aaa - bbb - cc - dd - ee - f - g

QLEG = Slip-clamp casing with exposed header. QLEF = Flanged casing with exposed header. QLEB = Slip-clamp casing with integrated header. QLEH = Flanged casing with integrated header.

aaa = Duct width (cm) 020-350 bbb = Duct eight (cm) 020-240 cc = Number of tube rows 01, 02, 03, 04, 06, 08, 10, 12 dd = Fin spacing (mm x 10) 20, 25, 30, 40, 50, 60 ee = Number of fluid paths 02, 04, 06, 08, 10, etc. f = Connection side 1=right, 2=left 3=right shared circuit 1/2+1/2 4=left shared circuit 1/2+1/2 5=right shared circuit 1/3+2/3 6=left shared circuit 1/3+2/3 7=right 3 equal stages 8=left 3 equal stages g = Material

Material	Casing	Header	Fin
A	Galv	Cu	AI
В	Galv	Cu	Cu
E	Galv	Cu	Corropaint
F	Galv	Cu	Cu tinned
L	SS	Cu	AI
M	SS	Cu	Cu
0	SS	Cu	Corropaint
P	SS	Cu	Cu tinned
Q	SS	Cu	Al corrodip

Galv=galvanized steel sheet, SS=stainless steel sheet, Cu=copper, Al=aluminium

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is ordered in either a right or left-hand design.

ACCESSORIES

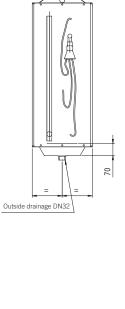
Additional accessories are available, see pages 94-96.

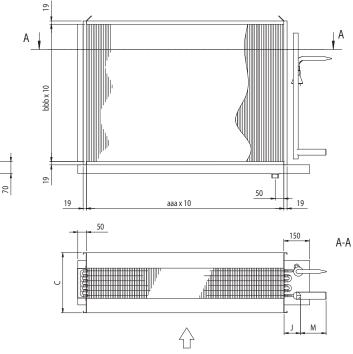
MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

QLEG, QLEF, QLEB, QLEH

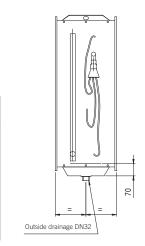

DIMENSION DRAWING QLEG: Slip-clamp casing with exposed header.

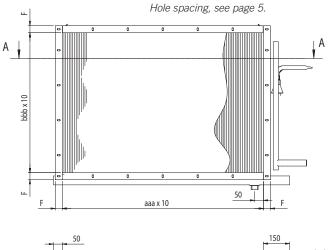

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

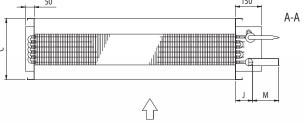
All dimensions in mm unless otherwise indicated.

No. of rows (cc)	Droplet elimin WITHOUT	ator C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

Connection OUT	J (mm)	M (mm)	Connection IN
1 1/8"	84	150	5/8" or 7/8"
1 3/8"	90	150	7/8"
1 5/8"	96	150	7/8"
2 1/8"	109	150	7/8"


DIMENSION DRAWING QLEF: Flanged casing with exposed header.

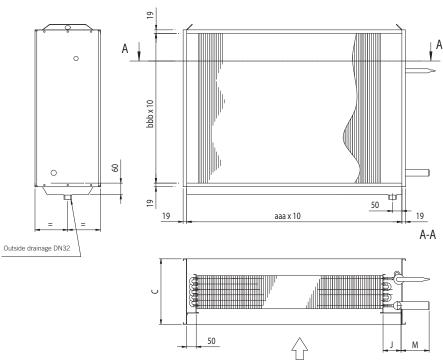

All dimensions in mm unless otherwise indicated.


aaa (cm)	F (mm)
≤240	40
>240	50

No. of rows (c)	Droplet elimin WITHOUT			
01	300	350		
02	300	350		
03	300	350		
04	300	350		
06	350	400		
08	400	460		
10	460	520		
12	520	580		

Connection OUT	J (mm)	M (mm)	Connection IN
1 1/8"	84	150	5/8" or 7/8"
1 3/8"	90	150	7/8"
1 5/8"	96	150	7/8"
2 1/8"	109	150	7/8"

QLEG, QLEF, QLEB, QLEH

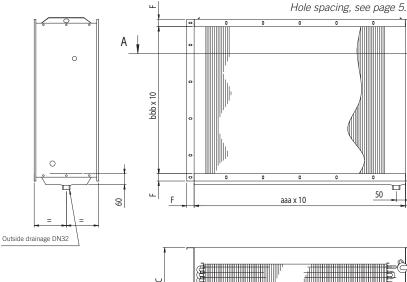

DIMENSION DRAWING QLEB: Slip-clamp casing with integrated header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

No. of rows (cc)	Droplet elimin WITHOUT	ator C (mm) WITH
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

Connection OUT	J (mm)	M (mm)	Connection IN
1 1/8"	84	150	5/8" or 7/8"
1 3/8"	90	150	7/8"
1 5/8"	96	150	7/8"
2 1/8"	109	150	7/8"


DIMENSION DRAWING QLEH: Flanged casing with integrated header.

All dimensions in mm unless otherwise indicated.

aaa (cm)	F (mm)
≤240	40
>240	50

No. of rows (cc)	Droplet eliminator C (mn WITHOUT WITH	
01	300	350
02	300	350
03	300	350
04	300	350
06	350	400
08	400	460
10	460	520
12	520	580

Connection OUT	J (mm)	M (mm)	Connection IN
1 1/8"	84	150	5/8" or 7/8"
1 3/8"	90	150	7/8"
1 5/8"	96	150	7/8"
2 1/8"	109	150	7/8"

50

 $\hat{\mathbf{h}}$

М

A

HEAT EXCHANGERS FOR CONDENSATION REFRIGERANT

The heat exchangers QLOG, QLOF, QLOB and QLOH are designed for heating air with condensing medium and are mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive PED 2014/68/EC.

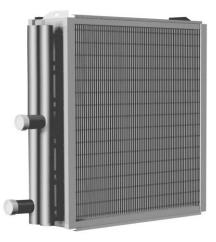
GENERAL

- The design consists of a fin body, headers and casing.
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, maximum output.
- Available in several output stages.
- The casing conforms to tightness class B according to VVS AMA98/EN 1751.
- AMA-code QFC.1.
- Materials for aggressive environments are available as standard.
- For the greatest cleanliness the heat exchangers are shield gas soldered and filled with nitrogen gas before delivery.

OPERATING DATA

- Normal air velocity should be 3-4 m/s.
- Max air velocity: 5.0 m/s.
- Max operating pressure: 2.2 MPa at max operating temperature 100°C.
- For air flows up to 40 m³/s.

MATERIAL & SIZE (see the code key for more info)


The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. The headers are made of copper. Standard sizes are from 200×200 mm to 3500×2400 mm. Materials for aggressive environments are available, see page 6.

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design.

QLOH with flanged casing and integrated header.

QLOG with slip-clamp casing and exposed header.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Outout	kW
	Air velocity	m/s
	Air pressure drop	Pa
Water side:	Return temperature	°C
	Media flow	l/s
	Media pressure drop	kPa

QLOG, QLOF, QLOB, QLOH

OUTPUT STAGES

The heat exchangers can be delivered divided into one, two or several output stages depending on the height of the heat exchanger. Two output stages are normally coupled so that every other coil is coupled to output stage 1 and every other to output stage 2 ("interlaced coupling"), see figure 1. Connections and fluid pipes are equipped with copper washers that indicate the stage association. Heat exchanger with three or more output stages are normally divided vertically, see figure 2.

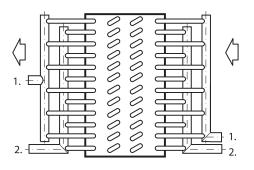


Figure 1. Two output stages with "interlace coupling".

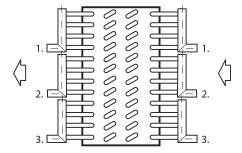


Figure 2. Three or more output stages are normally divided vertically.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

CODE KEY

QLO_- aaa - bbb - cc - dd - ee - f - g

QLOG = Slip-clamp casing with exposed header. QLOF = Flanged casing with exposed header. QLOB = Slip-clamp casing with integrated header. QLOH = Flanged casing with integrated header.

aaa = Duct width (cm) 020-350

bbb = Duct height (cm) 020-240

- cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12
- dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

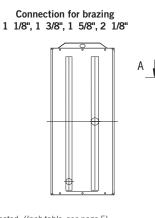
f = Connection side 1=right, 2=left, 3=right shared circuit 1/2+1/2 4=left shared circuit 1/2+1/2 5=right shared circuit 1/3+2/3 6=left shared circuit 1/3+2/3 7=right 3 equal stages

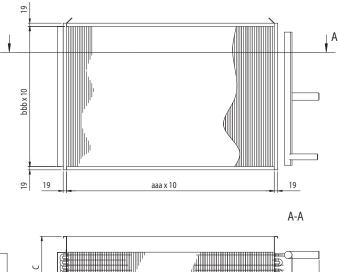
8=left 3 equal stages

g = Material

Materi	ial	Casing	Header	Fin
A		Galv	Cu	AI
В		Galv	Cu	Cu
E		Galv	Cu	Corropaint
F		Galv	Cu	Cu tinned
L		SS	Cu	AI
M		SS	Cu	Cu
0		SS	Cu	Corropaint
P		SS	Cu	Cu förtennet
Q		SS	Cu	Al corrodip

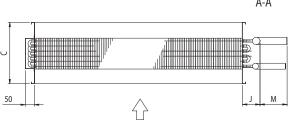
Galv=galvanized steel sheet, SS= stainless steel Cu=copper, Al=aluminium

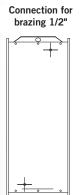



Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

QLOG, QLOF, QLOB, QLOH

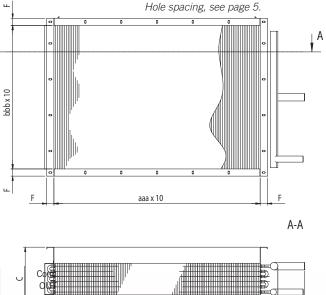
DIMENSION DRAWING QLOG: Slip-clamp casing with exposed header.


Connection for brazing 1/2"



All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

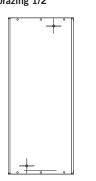
No. of rows	C (mm)	Conn.	J + M		
(cc)		1/2"	265		
01	150				
02	150	Conn.			Conn.
03	150	IN	J (mm)	M (mm)	OUT
04	300		0.4	150	
06	350	1 1/8"	84	150	7/8"
08	400	1 3/8"	90	150	1 1/8"
10	460	1 5/8"	96	150	1 3/8"
12	520	2 1/8"	109	150	1 5/8"

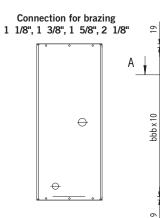

DIMENSION DRAWING QLOF: Flanged casing with exposed header.

Connection for brazing 1 1/8", 1 3/8", 1 5/8", 2 1/8"

No. of rows (cc)	C (mm)	aaa (cm)	F (mm)	Connection	J + M
01 02	150 150	≤240 >240	40 50	1/2"	265
03 04	150 300	Conn. IN	J (mm)	M (mm)	Conn. OUT
06 08 10 12	350 400 460 520	1 1/8" 1 3/8" 1 5/8" 2 1/8"	84 90 96 109	150 150 150 150	7/8" 1 1/8" 1 3/8" 1 5/8"

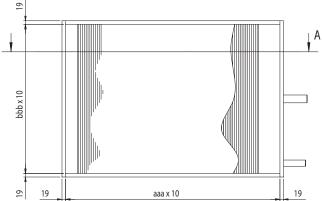
 $\left\{ \right\}$

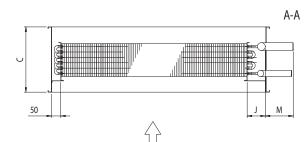

М

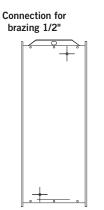

50

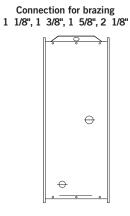
QLOG. QLOF, QLOB, QLOH

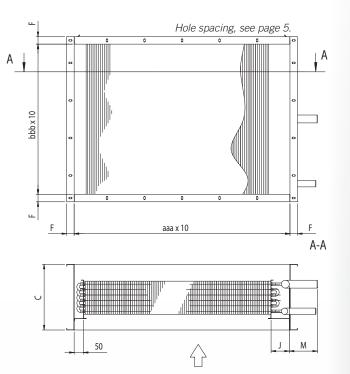
DIMENSION DRAWING QLOB: Slip-clamp casing with integrated header.


Connection for brazing 1/2"




All dimensions in mm unless otherwise indicated. (Inch table, see page 5)


No. of rows	C (mm)	Conn.	J + M		
(cc)		1/2"	265		
01	300				
02	300	Conn.			Conn.
03	300	IN	J (mm)	M (mm)	OUT
04	300			150	7.01
06	350	1 1/8"	84	150	7/8"
08	400	1 3/8"	90	150	1 1/8"
10	460	1 5/8"	96	150	1 3/8"
12	520	2 1/8"	109	150	1 5/8"


DIMENSION DRAWING QLOH: Flanged casing with integrated header.

All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

No. of rows (cc)	C (mm)	aaa (cm) ≤240	F (mm) 40	Conn.	J + M
01 02	150 150	>240	50	1/2"	265
03 04	150 300	Conn. IN	J (mm)	M (mm)	Conn. OUT
06 08 10 12	350 400 460 520	1 1/8" 1 3/8" 1 5/8" 2 1/8"	84 90 96 109	150 150 150 150	7/8" 1 1/8" 1 3/8" 1 5/8"

HEAT EXCHANGERS FOR STEAM

QLSG, QLSF

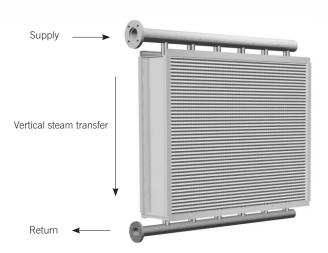
The heat exchangers QLSG and QLSF are designed for heating air with steam and intended for

vertical steam transfer. Mounted on ducts or on the wall of the unit room. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.

GENERAL

- The design consists of a fin body, headers and casing.
- As standard the casing is available in a PG-slip clamp design alternative with a drilled frame according to RFHF, RVGL.
- The tubes are zigzag mounted in the fin body to give, with the pleated fins, the highest output.
- The header is equipped with soldered and welded flanges.
- Heat exchangers over 25 kilograms are equipped with lifting lugs.
- Low pressure drop on the air side.
- AMA-code QFC.
- Materials for aggressive environments are available as standard.

OPERATING DATA


- Normal air velocity should be 3-4 m/s.
- Max air velocity: 5,0 m/s.
- Max operating pressure: 1,0 MPa at max operating temperature 185°C.
- For air flows up to 34 m³/s.
- All heat exchangers are leakage tested using dry air under water.

STEAM CLEANLINESS

The steam's pH-value should be between 8,8 and 9,2. The oxygen (O_2) content must not exceed 0.01 mg/kg. Ammonia content (NH_3) must not exceed 0,3 mg/kg.

MATERIAL & SIZE (see the code key for more info)

The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. The header on the steam side is made of steel (DN 25 is made of copper) and on the condensate side of copper. The weld flanges are designed of steel and the soldered flanges are of brass with loose ring of steel. Standard sizes are from 200 x 200 mm to 3500 x 800 mm. Materials for aggressive environments are available, *see page 6*.

QLSG with slip-clamp casing and exposed header. The heat exchanger is connected with steam to the upper pipe and the return to the lower pipe.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Outout	kW
	Air velocity	m/s
	Air pressure drop	Ра
Steam side:	Steam flow	kg/s

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected with steam to the upper pipe and the return to the lower pipe, see figure above.

FREEZE PROTECTION

If there is a risk of freezing it is appropriate to fit a freeze protection sensor in the air stream, alternatively an electric heater can preheat the air.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

QLSG, QLSF

CODE KEY

QLS_- aaa - bbb - c - dd - ee - ff - g

QLSG = Slip-clamp casing with exposed header. QLSF = Flanged casing with exposed header.

aaa = Duct height (cm) 020-350

bbb = Duct width (cm) 020-180

c = No. of tube rows 01, 02

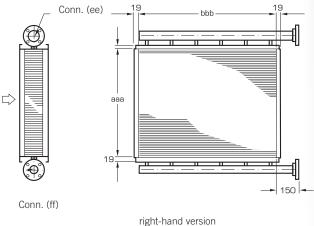
dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Connection size, steam side 32, 50

ff = Connection, condensate side 25

g = Material

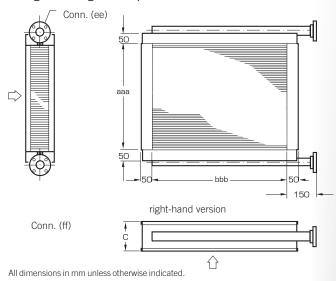
Material	Casing	Header	Fin
Α	Galv	Steel (conn 25 Cu)	Al
В	Galv	Cu	Cu
D	Galv	Cu	AI
F	Galv	Cu	Cu tinned
L	SS	Steel (conn 25 Cu)	AI
М	SS	Cu	Cu
N	SS	Cu	AI
Р	SS	Cu	Cu tinned

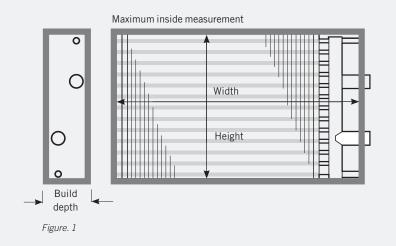

Galv=galvanized steel sheet, SS= stainless steel Cu=copper, Al=aluminium

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

DIMENSION DRAWING QLSG:

Slip-clamp casing with exposed header.


Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.


DIMENSION DRAWING QLSF:

Flanged casing with exposed header.

No. of rows (cc)	C (mm)
01	132
02	161

HEAT EXCHANGERS FOR INSTALLATION IN UNITS

SELECTION OF THE HEAT EXCHANGER FOR REPLACEMENT IN THE UNIT

- 1. Measure
 - the inside measurement in the existing unit
 - -width
 - height
 - build depth.
- On the cooling and exhaust air coil, check whether the drip tray belonging to the heat exchanger or is fitted in the bottom of the unit. Cooling and exhaust air coils can be ordered with or without a drip tray, the drain is always fitted horizontally.
- Dimension a new heat exchanger in the calculation software Coils.
 If there is no dimensioning data: Count the number of tube rows and fin spacing.
 (Due to development the new heat exchanger often provides a better capacity with the same number of pipe rows and fin spacing).
- **4.** The software also gives dimensional sketches. Check using the measured dimensions. Note that the connection size affects the total width measurement.
- During installation the placement of connections usually differs, depending on the manufacturer and the year of manufacture. Drill new holes in the panel and cover the old holes. Any flanges on the water side are always ordered unassembled. Heat exchangers for installation in units are always manufactured with long connections and nipples to reach through the unit casing.

Width measurement: Available in cm increments from 20 cm to 350 cm. Height measurement: Available in 3,33 cm increments from 20 cm to 240 cm.

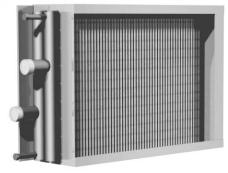
HEAT EXCHANGERS FOR AIR HANDLING UNITS

QLHN, QLHT, QLHO, QLHQ

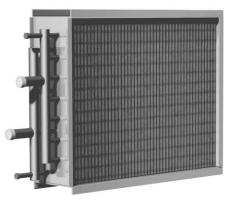
The heat exchangers QLHN, QLHT, QLHO and QLHQ are designed for heating air with fluid as the heat carrier and are mounted in the unit. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.

GENERAL

- The design consists of a fin body, headers and casing.
- The heat exchanger is equipped with nipples for bleeding and drainage and at least one of the nipples can be equipped with a sensor for a freeze protection thermostat (does not apply to connection DN 15).
- The zigzag tubes are mounted in the fin body in a falling coil so the heat exchanger can be drained.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- AMA-code QFC.1.
- Materials for aggressive environments are available as standard.
- If a specific connection size is required, the following fluid flow restrictions apply:


Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

OPERATING DATA


- Max fluid velocity: 1,5 m/s in tubes.
- Normal air velocity should be 3-4 m/s.
- Max air velocity: 5,0 m/s.
- Max operating pressure: 1,6 MPa at max operating temperature 100 °C.
- Max operating pressure: 1,0 MPa at max operating temperature 150 °C.
- For air flows up to 40 m³/s.
- All heat exchangers are leakage tested using dry air under water.

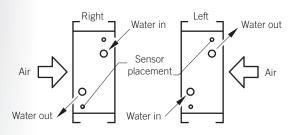
MATERIAL & SIZE (see the code key for more info) The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet and possible drip tray of stainless steel. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections.

QLHN: Standard sizes from 200 x 200 mm–3500 x 2400 mm. QLHT: Standard sizes from 200 x 200 mm–1200 x 1000 mm. Materials for aggressive environments are available, *see page 6*.

QLHN casing with inward folded edges on the top and bottom plates as well as cover plates for the header and elbows.

QLHT with basic casing without cover plate.

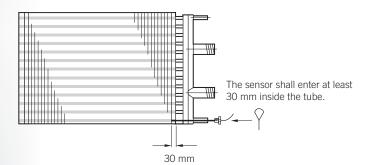
DIMENSIONING VIA COILS


Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out Outout Air velocity Air pressure drop	°C kW m/s Pa
Water side:	Return temperature Fluid flow Fluid velocity Fluid pressure drop	°C I/s m/s kPa

QLHN, QLHT, QLHO, QLHQ

INSTALLATION


The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchangers are not in right/left designs but are reversible. The system must be fully bled to give optimal performance.

Counter flow coupling.

FREEZE PROTECTION

At least one of the heat exchangers' nipples can be equipped with a sensor for a freeze protection thermostat, see the figure below. If, after draining, the heat exchanger is exposed to a risk of freezing it should be blown through with air to ensure that all water has been removed.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

CODE KEY

QLH_- aaa - bbb - cc - dd - ee - fff

- QLHN = Casing with inward folded edges on the top and bottom plates. Cover plate for the header.
- QLHT = Basic casing without cover plate.
- QLHO = Casing with outward folded edges on the top and bottom plates.
- QLHQ = Casing with outward folded edges on the top and bottom plates. Cover plate for the header.

aaa = Width (cm)

QLHN, QLHO, QLHQ: 020-350 QLHT: 020-120 (Fin width excl. header and elbows)

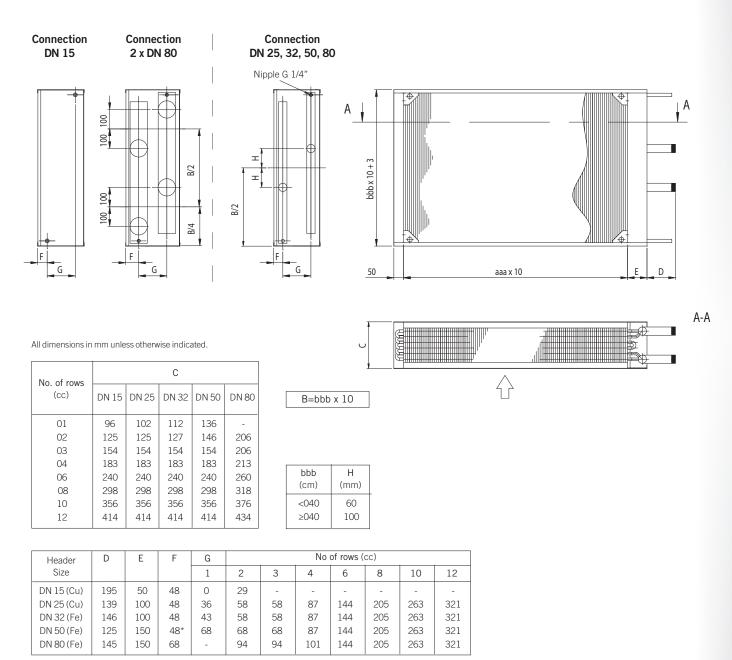
bbb = Height (cm) QLHN, QLHO, QLHQ: 020-240 QLHT: 020-100 (Fin height excl. plates)

cc = No. of tube rows

QLHN, QLHO, QLHQ: 01, 02, 03, 04, 06, 08, 10, 12 QLHT: 01, 02, 03, 04, 06

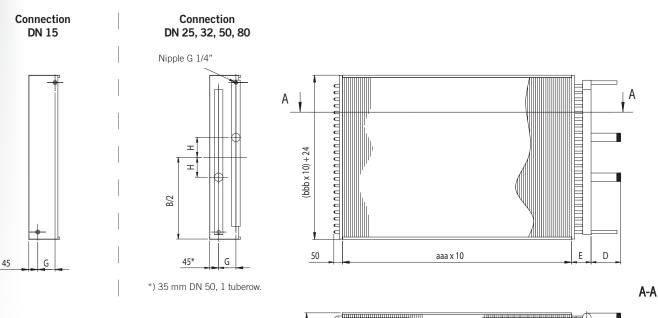
dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

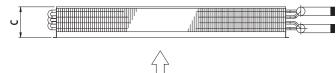
ee = Number of fluid paths 02-98


f-- = Connection side QLHO, QLHQ: 1=right, 2=left

-ff = Edge height on top and bottom plate (mm) QLHO, QLHQ: 17-99

QLHN, QLHT, QLHO, QLHQ


DIMENSION DRAWING QLHN: Casing with inward folded edges on the top and bottom plates. Cover plate for the header. Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.



QLHN, QLHT, QLHO, QLHQ

DIMENSION DRAWING QLHT: Basic casing without cover plate.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

No. of

rows (cc) 01

02

03

04

06

С

125

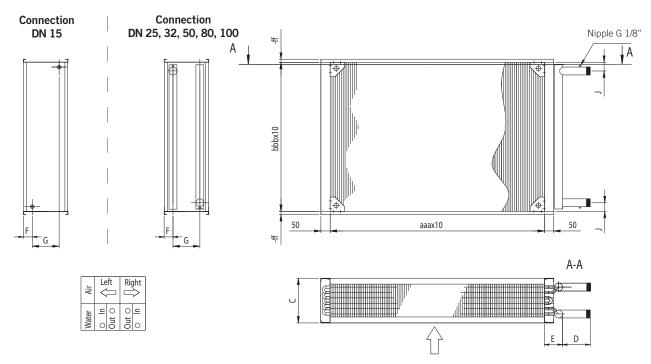
125

125

154

221

B=bbb x 10					
bbb	Н				
(cm)	(mm)				
<040	60				
≥040	100				

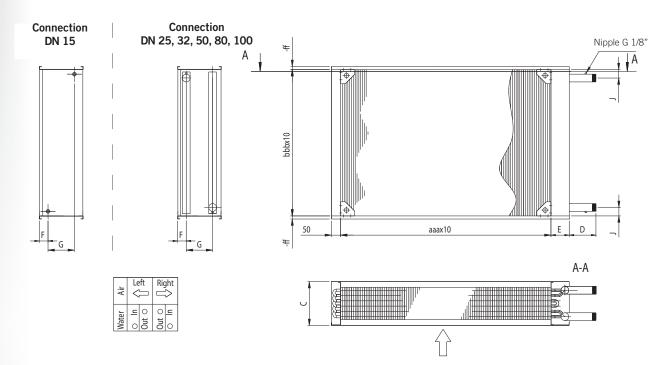

Header	D	E	G	No. of rows (cc)			
Size			1	2	3	4	6
DN 15 (Cu)	-	-	0	29	-	-	-
DN 25 (Cu)	150	90	36	58	58	87	144
DN 32 (Fe)	149	97	43	58	58	87	144
DN 50 (Fe)	160	115	68	68	68	87	144
DN 80 (Fe)	151	144	-	94	94	101	144

QLHN, QLHT, QLHO, QLHQ

DIMENSION DRAWING QLHO: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.


Header	D	E	J	F	G	No. of rows (cc)						
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	-	-	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	150	90	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	149	97	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	160	115	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	151	144	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	150	169	84	68	-	-	-	-	144	205	263	321

No. of rows	С									
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100				
01	96	102	112	136	-	-				
02	125	125	127	146	206	-				
03	154	154	154	154	206	-				
04	183	183	183	183	213	-				
06	240	240	240	240	260	269				
08	298	298	298	298	318	327				
10	356	356	356	356	376	385				
12	414	414	414	414	434	443				

QLHN, QLHT, QLHO, QLHQ

DIMENSION DRAWING QLHQ: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

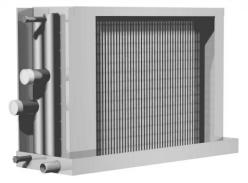
No. of rows	С									
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100				
01	96	102	112	136	-	-				
02	125	125	127	146	206	-				
03	154	154	154	154	206	-				
04	183	183	183	183	213	-				
06	240	240	240	240	260	269				
08	298	298	298	298	318	327				
10	356	356	356	356	376	385				
12	414	414	414	414	434	443				

Header	D	E	J	F	G	G No. of rows (cc)						
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	195	50	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	140	100	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	146	100	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	125	150	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	145	150	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	139	180	84	68	-	-	-	-	144	205	263	321

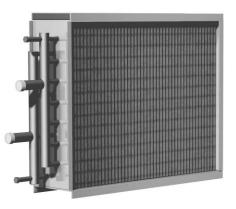
HEAT EXCHANGERS FOR COOLING

QLCN, QLCT, QLCO, QLCQ

The heat exchangers QLCN, QLCT, QLCO and QLCQ are designed for cooling of air with cooling water and are intended for installation in units. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.


GENERAL

- The design consists of a fin body, headers and casing.
- The QLCN casing has inward folded edges on the top and bottom plates and cover plates for the header and elbows. Available with or without drip tray (horizontal drain 32 mm).
- QLCT has a basic casing without a cover plate for the header. The advantage is a smaller built-in depth. Cannot be selected with drip tray.
- The zigzag tubes are mounted in the fin body in a falling coil so the heat exchanger can be drained.
- The heat exchanger is equipped with nipples for bleeding and draining. The plug is designed as a manual bleeding valve.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- AMA-code QFC.21.
- Materials for aggressive environments are available.
- If a specific connection size is required, the following fluid flow restrictions apply:


Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80 (QLCN, QLCT)	28,0 l/s
DN 100 (QLCO, QLCQ)	23,5 l/s

OPERATING DATA

- Max fluid velocity: 2,0 m/s in tubes.
- Normal air velocity should be 2-3 m/s.
- Max air velocity without droplet eliminator: 2,9 m/s.
- Max air velocity with droplet eliminator: 5,0 m/s.
- Max operating pressure: 1,6 MPa at max operating temperature 100 °C.
- Max operating pressure: 1,0 MPa at max operating temperature 150 °C.
- For air flows up to 40 m³/s.
- All heat exchangers are leakage tested using dry air under water.

QLCN with inward folded top and bottom plates and cover plate for the header and elbows. Available with or without drip tray.

QLCT has a basic casing without a cover plate for the header. Cannot be selected with drip trav.

MATERIAL & SIZE (see the code key for more info) The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet and possible drip tray of stainless steel. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections. QLCN, QLCO, QLCQ: Standard sizes are from 200 x 200 mm to 3500 x 2400 mm.

QLCT: Standard sizes are from 200 x 200 mm to 1200 x 1000 mm. Materials for aggressive environments are available, see page 6.

QLCN, QLCT, QLCO, QLCQ

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air temperature out	°C
Outout	kW
Air velocity	m/s
Air pressure drop, wet and dry	Pa
Outgoing moisture option	%
Condensate	g/s
Return temperature	°C
Fluid flow	l/s
Fluid velocity	m/s
Fluid pressure drop	kPa
	Outout Air velocity Air pressure drop, wet and dry Outgoing moisture option Condensate Return temperature Fluid flow Fluid velocity

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance. If, after draining, the heat exchanger is exposed to a risk of freezing it should be blown through with air to ensure that all water has been removed.

Counter flow coupling.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

CODE KEY

QLC_- - aaa - bbb - cc - dd - ee - fff

- QLCN = Casing with inward folded edges on the top and bottom plates. Cover plate for the header. Available with or without drip tray.
- QLCT = Basic casing without cover plate. Without drip tray.
- QLCO = Casing with outward folded edges on the top and bottom plates.
- QLCQ = Casing with outward folded edges on the top and bottom plates. Cover plate for the header.

aaa = Width (cm)

QLCN, QLCO, QLCQ: 020-350,

QLCT: 020-120 (Fin width excl. header and elbows)

bbb = Height (cm)

QLCN, QLCO, QLCQ: 020-240,

QLCT: 020-100 (Fin height excl. plates)

cc = No. of tube rows

QLCN, QLCO, QLCQ: 01, 02, 03, 04, 06, 08, 10, 12 QLCT: 01, 02, 03, 04, 06

dd = Fin spacing (mm x 10) 20, 25, 30, 40, 50, 60

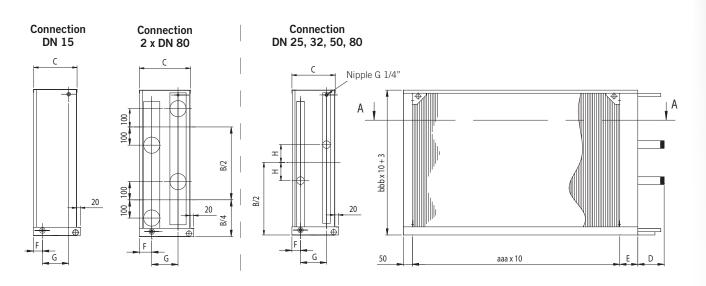
ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

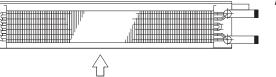
f-- = Connection side

QLCN: 1=right without drip tray, 2=left without drip tray, 3=right with drip tray, 4=left with drip tray, 5=right with drip tray and space for droplet eliminator,

6=left with drip tray and space for droplet eliminator, QLCT, QLCO, QLCQ: 1=right, 2=left.

-ff = Edge height on top and bottom plate (mm) QLCO, QLCQ: 17-99


Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.



QLCN, QLCT, QLCO, QLCQ

DIMENSION DRAWING QLCN WITH DRIP TRAY: Casing with inward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

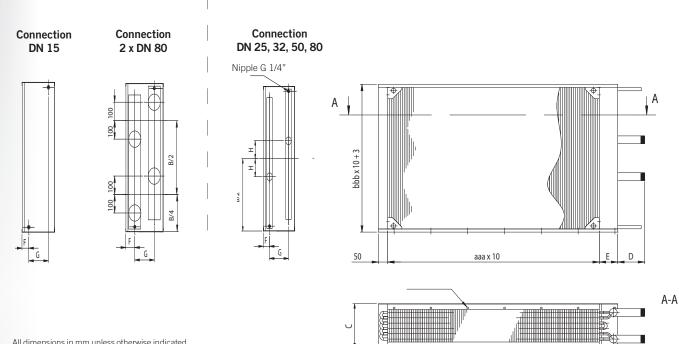
f=3,4	С							
No. of rows (cc)	DN 15	DN 25	DN 32	DN 50	DN 80			
01	96	102	112	136	-			
02	125	125	127	146	206			
03	154	154	154	154	206			
04	183	183	183	183	213			
06	240	240	240	240	260			
08	298	298	298	298	318			
10	356	356	356	356	376			
12	414	414	414	414	434			

f=5,6		С								
No. of rows (cc)	DN 15	DN 25	DN 32	DN 50	DN 80					
01	206	212	222	246	-					
02	235	235	237	256	316					
03	264	264	264	264	316					
04	293	293	293	293	323					
06	350	350	350	350	370					
08	408	408	408	408	428					
10	466	466	466	466	486					
12	524	524	524	524	544					

Header	D	Е	F	G No. of rows (cc)							
Size				1	2	3	4	6	8	10	12
DN 15 (Cu)	195	50	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	139	100	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	146	100	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	125	150	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	145	150	68	-	94	94	101	144	205	263	321

*) 38 by 1 tuberow.

A-A


B=bbb x 10

bbb	H
(cm)	(mm)
<040	60
≥040	100
2040	100

QLCN, QLCT, QLCO, QLCQ

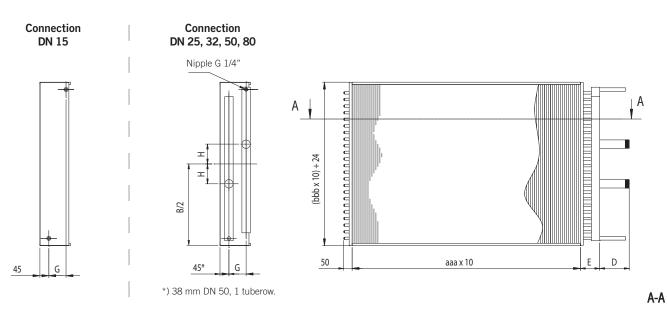
DIMENSION DRAWINGS QLCN WITHOUT DRIP TRAY: Casing with inward folded edges on the top and bottom plates.

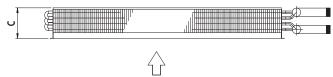
Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

f=1,2		С									
No. of rows (cc)	DN 15	DN 25	DN 32	DN 50	DN 80						
01	96	102	112	136	-						
02	125	125	127	146	206						
03	154	154	154	154	206						
04	183	183	183	183	213						
06	240	240	240	240	260						
08	298	298	298	298	318						
10	356	356	356	356	376						
12	414	414	414	414	434						

Header	D	E	F	F G No. of rows (cc)								
Size				1	2	3	4	6	8	10	12	
DN 15 (Cu)	195	50	48	0	29	-	-	-	-	-	-	
DN 25 (Cu)	139	100	48	36	58	58	87	144	205	263	321	
DN 32 (Fe)	146	100	48	43	58	58	87	144	205	263	321	
DN 50 (Fe)	125	150	48*	68	68	68	87	144	205	263	321	
DN 80 (Fe)	145	150	68	-	94	94	101	144	205	263	321	


 $\hat{\mathbf{U}}$


bbb	H
(cm)	(mm)
<040	60
≥040	100

QLCN, QLCT, QLCO, QLCQ

DIMENSION DRAWINGS QLCT: Basic casing without cover plate.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

No. of rows

(cc) 01

02

03

04

06

С

125

125

125

154

221

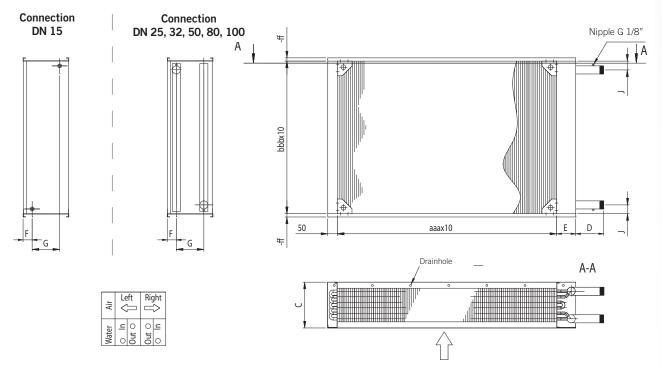
Header	D	Е	G No. of rows (cc)							
Size			1	2	3	4	6			
DN 15 (Cu)	-	-	O	29	-	-	-			
DN 25 (Cu)	150	90	36	58	58	87	144			
DN 32 (Fe)	149	97	43	58	58	87	144			
DN 50 (Fe)	160	115	68	68	68	87	144			
DN 80 (Fe)	151	144	-	94	94	101	144			

QLCN, QLCT, QLCO, QLCQ

DIMENSION DRAWING QLCO: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

Header	D	E	J	F	G	G No. of rows (cc)							
Size					1	2	3	4	6	8	10	12	
DN 15 (Cu)	-	-	-	48	0	29	-	-	-	-	-	-	
DN 25 (Cu)	150	90	27	48	36	58	58	87	144	205	263	321	
DN 32 (Fe)	149	97	46	48	43	58	58	87	144	205	263	321	
DN 50 (Fe)	160	115	55	48*	68	68	68	87	144	205	263	321	
DN 80 (Fe)	151	144	69	68	-	94	94	101	144	205	263	321	
DN 100 (Fe)	150	169	84	68	-	-	-	-	144	205	263	321	


*) 38 by 1 tuberow.

QLCN, QLCT, QLCO, QLCQ

DIMENSION DRAWING QLCQ: Casing with outward folded edges on the top and bottom plates.

Cover plates for the header and elbows.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

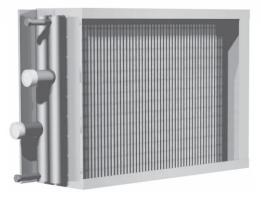
All dimensions in mm unless otherwise indicated.

No. of rows				С		
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100
01	96	102	112	136	-	-
02	125	125	127	146	206	-
03	154	154	154	154	206	-
04	183	183	183	183	213	-
06	240	240	240	240	260	269
08	298	298	298	298	318	327
10	356	356	356	356	376	385
12	414	414	414	414	434	443

Header	D	E	J	F	G No. of rows (cc)							
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	195	50	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	140	100	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	146	100	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	125	150	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	145	150	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	139	180	84	68	-	-	-	-	144	205	263	321

HEAT EXCHANGER FOR HEAT RECOVERY - SUPPLY AIR

The heat exchangers Q(L,F)TN, Q(L,F)TO and Q(L,F)TQare designed for heating the supply air, via a circulating anti-freeze fluid, which recovers energy from the exhaust air. The heat exchangers are fitted in units. The design conforms with the Pressure Equipment Directive 2014/68/EU.


GENERAL

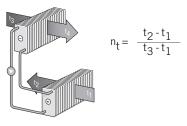
- The design consists of a fin body, headers and casing.
- QL= 1/2" tubes with pleated fins QF= 1/2"tubes with plain fins
- QLTN-casing with inward folded edges on the top and bottom plates and cover plate for the header and elbows.
- The header is equipped with nipples for bleeding and draining. The plug is designed as a manual bleeding valve.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, maximum efficiency.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- AMA-code QFC.
- Materials for aggressive environments are available.
- If a specific connection size is required, the following fluid flow estrictions apply:

Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

OPERATING DATA

- Max fluid velocity: 1,5 m/s in tubes.
- Normal air velocity should be 2-3 m/s.
- Max air velocity: 5 m/s.
- For air flows up to 40 m³/s.
- Max operating pressure: 1,6 MPa at max operating temperature 100 °C.
- Max operating pressure: 1,0 MPa at max operating temperature 150 °C.
- All heat exchangers are leakage tested using dry air under water.

The QLTN casing with inward folded edges on the top and bottom plates as well as cover plates for the header and elbows.

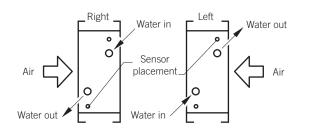

MATERIAL & SIZE

The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections. QLTN, QLTO, QLTQ: Standard sizes are from 200 x 200 mm to 3500 x 2400 mm. Materials for aggressive environments are available, *see page 6.*

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which presents dimensional sketches and the following data:

Temperature efficiency in %:



Air side:	Air temperature out	°C
	Output	kW
	Air velocity	m/s
	Air pressure drop	Pa
	Outgoing moisture option	%
Water side:	Return temperature	°C
	Fluid flow/heat exchanger	l/s
	Total fluid flow	l/s
	Fluid velocity	m/s

Q(L,F)TN, Q(L,F)TO, Q(L,F)TQ - ECOTERM®

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.

Counter flow coupling.

ANTI-FREEZE (BRINES)

Glycols, ethanols, salt solutions, oils, etc. In order to gain good performance it is extremely important that the system is filled with the same brine solution and concentration that it is designed for. Different types of brine are included in the calculation program Coils, which gives the correct pressure drop depending on the brine and concentration. Examples of normal mixtures of ethylene glycol are 20-35% and propylene glycol 25-35%. Depending which temperature the system works at a concentration of 20% could eliminate frost tension in the heat exchanger.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

CODE KEY

$Q(L,F)T_-$ aaa - bbb - cc - dd - ee - fff

- Q(L,F)TN = Casing with inward folded edges on the top and bottom plates. Cover plate for the header.
- Q(L,F)TO = Casing with outward folded edges on the top and bottom plates.
- Q(L,F)TQ = Casing with outward folded edges on the top and bottom plates. Cover plate for the header.
- QL = 1/2" tubes with pleated fins
- QF = 1/2" tubes with plain fins

aaa = Width (cm) 020-350

(Fin width excl. header and elbows)

bbb = Heigth (cm) 020-240 (Fin height excl. plates)

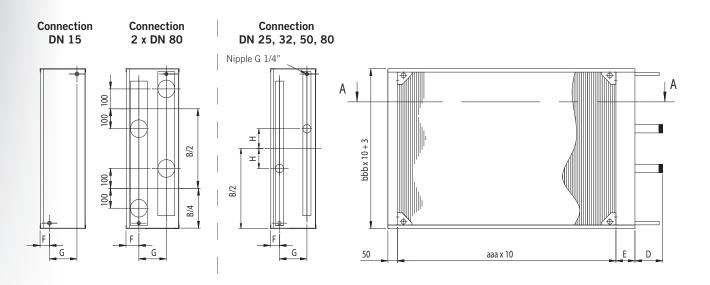
cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12.

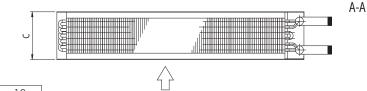
dd = Fin spacing 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f-- = Connection side

QLTO, QLTQ: 1=right, 2=left


-ff = Edge height on top and bottom plate (mm) QLOO, QLOQ: 17-99


Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

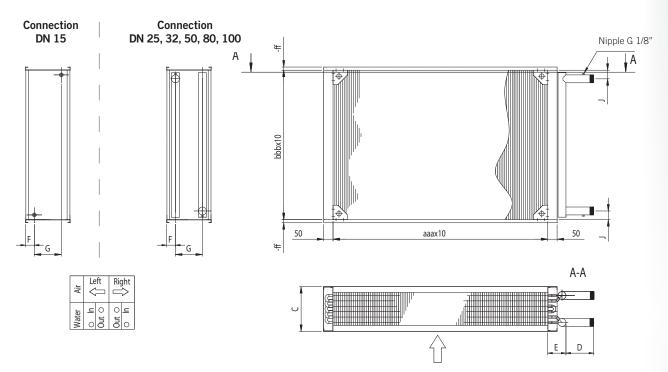
Q(L,F)TN, Q(L,F)TO, Q(L,F)TQ - ECOTERM®

DIMENSION DRAWING Q(L,F)TN: Casing with inward folded edges on the top and bottom plates. Cover plate for the header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

No. of rows	С								
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80				
01	96	102	112	136	-				
02	125	125	127	146	206				
03	154	154	154	154	206				
04	183	183	183	183	213				
06	240	240	240	240	260				
08	298	298	298	298	318				
10	356	356	356	356	376				
12	414	414	414	414	434				


B=bbb x 10								
bbb	Н							
(cm)	(mm)							
<040	60							
≥040	100							

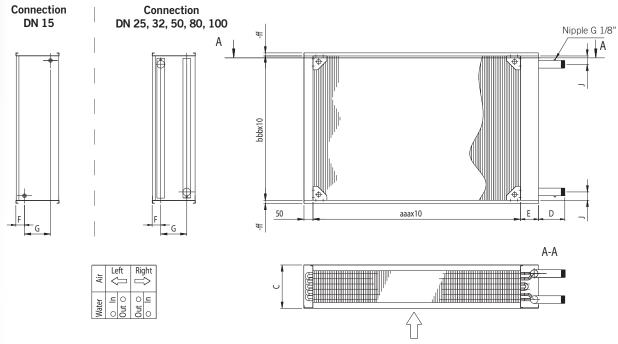
Header	D	E	F	G	No. of rows (cc)							
Size				1	2	3	4	6	8	10	12	
DN 15 (Cu)	195	50	48	0	29	-	-	-	-	-	-	
DN 25 (Cu)	139	100	48	36	58	58	87	144	205	263	321	
DN 32 (Fe)	146	100	48	43	58	58	87	144	205	263	321	
DN 50 (Fe)	125	150	48*	68	68	68	87	144	205	263	321	
DN 80 (Fe)	145	150	68	-	94	94	101	144	205	263	321	

Q(L,F)TN, Q(L,F)TO, Q(L,F)TQ - ECOTERM®

DIMENSION DRAWING Q(L,F)TO: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.


Header	D	E	J	F	G	G No. of rows (cc)						_
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	-	-	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	150	90	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	149	97	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	160	115	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	151	144	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	150	169	84	68	-	-	-	-	144	205	263	321

No. of rows	С									
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100				
01	96	102	112	136	-	-				
02	125	125	127	146	206	-				
03	154	154	154	154	206	-				
04	183	183	183	183	213	-				
06	240	240	240	240	260	269				
08	298	298	298	298	318	327				
10	356	356	356	356	376	385				
12	414	414	414	414	434	443				

Q(L,F)TN, Q(L,F)TO, Q(L,F)TQ - ECOTERM®

DIMENSION DRAWING Q(L,F)TQ: Casing with outward folded edges on the top and bottom plates. Cover plate for the header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

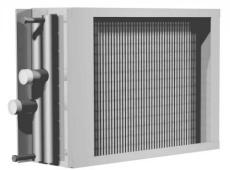
All dimensions in mm unless otherwise indicated.

No. of rows	С									
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100				
01	96	102	112	136	-	-				
02	125	125	127	146	206	-				
03	154	154	154	154	206	-				
04	183	183	183	183	213	-				
06	240	240	240	240	260	269				
08	298	298	298	298	318	327				
10	356	356	356	356	376	385				
12	414	414	414	414	434	443				

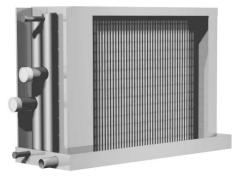
Header	D	E	J	F	G	No. of rows (cc)						
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	195	50	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	140	100	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	146	100	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	125	150	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	145	150	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	139	180	84	68	-	-	-	-	144	205	263	321

HEAT EXCHANGER FOR HEAT RECOVERY - EXHAUST AIR

The heat exchangers Q(L,F)FN, Q(L,F)FO and Q(L,F)FQare designed for heating the exhaust air, via a circulating antifreeze fluid, which recovers energy from the supply air. The heat exchangers are fitted in units. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.


GENERAL

- The design consists of a fin body, headers and casing.
- QL= 1/2" tubes with pleated fins QF= 1/2"tubes with plain fins
- The QLFN casing with inward folded edges on the top and bottom plates as well as cover plates for the header and elbows. QLFN is available with or without drip tray (horizontal drain 32 mm).
- The header is equipped with nipples for bleeding an draining. The plug is designed as a manual bleeding valve.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, maximum efficiency.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- AMA-code QFC.
- If a specific connection size is required, the following fluid flow restrictions apply:


Connection	Flow (max)
DN 15	0,7 l/s
DN 25	1,6 l/s
DN 32	2,8 l/s
DN 50	7,0 l/s
DN 80	14,0 l/s
2 x DN 80	28,0 l/s

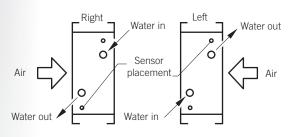
OPERATING DATA

- Max fluid velocity should be 1,5 m/s in tubes.
- Normal air velocity should be 2-3 m/s.
- Max air velocity without droplet eliminator: 2,9 m/s. Max air velocity with droplet eliminator: 5,0 m/s.
- For air flows up to 40 m³/s.
- Max operating pressure: 1,6 MPa at max operating temperature 100 °C.
- Max operating pressure: 1,0 MPa at max operating temperature 185 °C.
- All heat exchangers are leakage tested using dry air under water.

QLFN casing with inward folded edges on the top and bottom plates as well as cover plates for the header and elbows.

The QLFN with inward folded edges on the top and bottom plates and cover plate for the header and elbows. With drip tray.

MATERIAL & SIZE

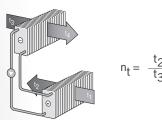

The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. Exhaust air coil's possible drip tray is made of stainless steel. As standard the header is designed of steel, a part from DN 15 and DN 25 which are of copper with brass connections. QLFN, QLFO, QLFQ: Standard sizes are from 200 x 200 mm till 3500 x 2400 mm.

Materials for aggressive environments are available, see page 6.

Q(L,F)FN, Q(L,F)FO, Q(L,F)FQ - ECOTERM®

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.



Counter flow coupling.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Temperature efficiency in %:

Air side:	Air temperature out	°C
	Output	kW
	Air velocity	m/s
	Air pressure drop	Ра
	Outgoing moisture option	%
Water side:	Return temperature	°C
	Fluid flow per coil	l/s
	Total fluid flow	l/s
	Fluid velocity	m/s

CODE KEY

$Q(L,F)F_-$ aaa - bbb - cc - dd - ee - fff

$$\label{eq:QLF} \begin{split} \mathsf{Q}(\mathsf{L},\mathsf{F})\mathsf{F}\mathsf{N} = & \mathsf{Casing with inward folded edges on the top} \\ & \mathsf{and bottom plates. Cover plate for the header.} \end{split}$$

- Q(L,F)FO = Casing with outward folded edges on the top and bottom plates.
- $$\label{eq:QLF} \begin{split} \mathsf{Q}(\mathsf{L},\mathsf{F})\mathsf{F}\mathsf{Q} = & \mathsf{Casing with outward folded edges on the top} \\ & \mathsf{and bottom plates. Cover plate for the header.} \end{split}$$

QL= 1/2" tubes with pleated fins

 $\mbox{QF}=$ 1/2" tubes with plain fins

aaa = Width (cm) 020-350

(Fin width excl. Header and elbows)

- **bbb = Height (cm)** 020-240 (Fin height excl. plates)
- cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12.
- dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60
- ee = Number of fluid paths 02, 04, 06, 08, 10, etc.
- f-- = Connection side
- QLFN: 1= right without drip tray, 2=left without drip tray,
 3= right with drip tray, 4=left with drip tray,
 5= right with drip tray and space for droplet eliminator,
 6= left with drip tray and space for droplet eliminator.

QLFO, QLFQ: 1=right, 2=left

-ff= Edge height on top and bottom plate (mm) QLFO, QLFQ: 17-99

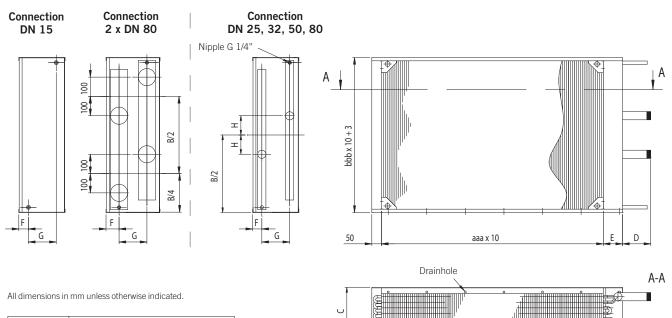
FREEZE PROTECTION

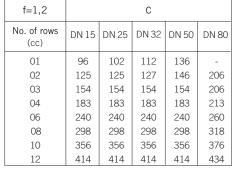
Glycols, ethanols, salt solutions, oils, etc. In order to gain good performance it is extremely important that the system is filled with the same brine solution and concentration that it is designed for. Different types of brine are included in the calculation program Coils, which gives the correct pressure drop depending on the brine and concentration. Examples of normal mixtures of ethylene glycol are 20-35% and propylene glycol 25-35%. Depending which temperature the system works at a concentration of 20% could eliminate frost tension in the heat exchanger.

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

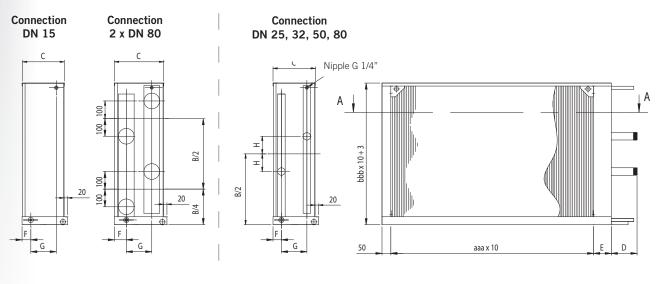

Operating and maintenance instructions are available via the production selection program Coils or from our website.

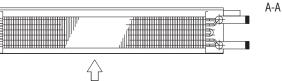

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

Q(L,F)FN, Q(L,F)FO, Q(L,F)FQ - ECOTERM®

 \mathcal{C}

DIMENSION DRAWING Q(L,F)FN: Casing with inward folded edges on the top and bottom plates. Cover plate for the header. Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.


B=bbb	ox10
bbb	Н
(cm)	(mm)
<040	60
≥040	100


Header	D	E	F	G	No. of rows (cc)						
Size				1	2	3	4	6	8	10	12
DN 15 (Cu)	195	50	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	139	100	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	146	100	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	125	150	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	145	150	68	-	94	94	101	144	205	263	321

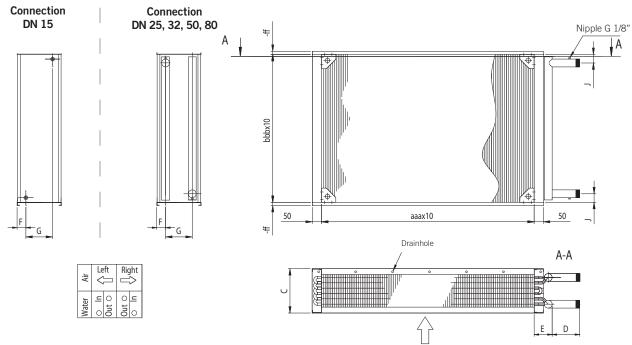
Q(L,F)FN, Q(L,F)FO, Q(L,F)FQ - ECOTERM®

DIMENSION DRAWING Q(L,F)FN WITH DRIP TRAY: Casing with inward folded edges on the top and bottom plates. Cover plate for the header.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

f=3,4	С							
No. of rows (cc)	DN 15	DN 25	DN 32	DN 50	DN 80			
01	96	102	112	136	-			
02	125	125	127	146	206			
03	154	154	154	154	206			
04	183	183	183	183	213			
06	240	240	240	240	260			
08	298	298	298	298	318			
10	356	356	356	356	376			
12	414	414	414	414	434			


f=5,6			С	С				
No. of rows (cc)	DN 15	DN 25	DN 32	DN 50	DN 80			
01	206	212	222	246	-			
02	235	235	237	256	316			
03	264	264	264	264	316			
04	293	293	293	293	323			
06	350	350	350	350	370			
08	408	408	408	408	428			
10	466	466	466	466	486			
12	524	524	524	524	544			

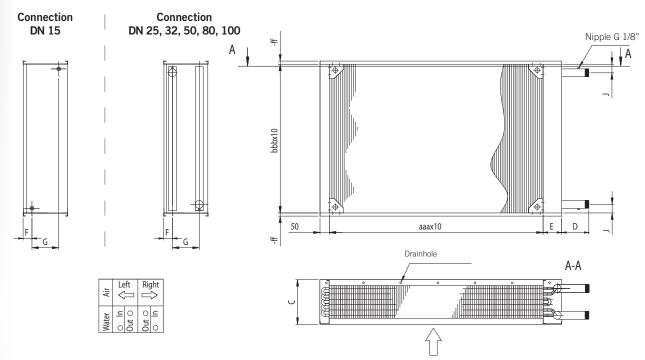
Header	D	E	F	G	No. of rows (cc)							B=bbbx10				
Size				1	2	3	4	6	8	10	12					
DN 15 (Cu)	195	50	48	0	29	-	-	-	-	-	-]				
DN 25 (Cu)	139	100	48	36	58	58	87	144	205	263	321		bbb (cm)	H (mm)		
DN 32 (Fe)	146	100	48	43	58	58	87	144	205	263	321			. ,		
DN 50 (Fe)	125	150	48*	68	68	68	87	144	205	263	321		<040	60		
DN 80 (Fe)	145	150	68	-	94	94	101	144	205	263	321		≥040	100		

Q(L,F)FN, Q(L,F)FO, Q(L,F)FQ - ECOTERM®

DIMENSION DRAWING Q(L,F)FO: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.


No. of rows	С											
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100						
01	96	102	112	136	-	-						
02	125	125	127	146	206	-						
03	154	154	154	154	206	-						
04	183	183	183	183	213	-						
06	240	240	240	240	260	269						
08	298	298	298	298	318	327						
10	356	356	356	356	376	385						
12	414	414	414	414	434	443						

Header	D	E	J	F	G	No. of rows (cc)						
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	-	-	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	150	90	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	149	97	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	160	115	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	151	144	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	150	169	84	68	-	-	-	-	144	205	263	321

Q(L,F)FN, Q(L,F)FO, Q(L,F)FQ - ECOTERM®

DIMENSION DRAWING Q(L,F)FQ: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated.

No. of rows	С											
(cc)	DN 15	DN 25	DN 32	DN 50	DN 80	DN 100						
01	96	102	112	136	-	-						
02	125	125	127	146	206	-						
03	154	154	154	154	206	-						
04	183	183	183	183	213	-						
06	240	240	240	240	260	269						
08	298	298	298	298	318	327						
10	356	356	356	356	376	385						
12	414	414	414	414	434	443						

Header	D	E	J	F	G	No. of rows (cc)						
Size					1	2	3	4	6	8	10	12
DN 15 (Cu)	195	50	-	48	0	29	-	-	-	-	-	-
DN 25 (Cu)	140	100	27	48	36	58	58	87	144	205	263	321
DN 32 (Fe)	146	100	46	48	43	58	58	87	144	205	263	321
DN 50 (Fe)	125	150	55	48*	68	68	68	87	144	205	263	321
DN 80 (Fe)	145	150	69	68	-	94	94	101	144	205	263	321
DN 100 (Fe)	139	180	84	68	-	-	-	-	144	205	263	321

HEAT EXCHANGER FOR EVAPORATING REFRIGERANT (DX)

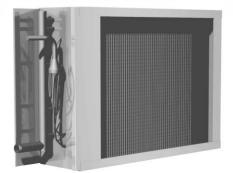
The heat exchangers QLEN, QLET, QLEO and QLEQ are designed for cooling of air with an evaporating medium and are mounted in the unit room. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.

GENERAL

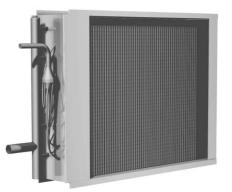
- The design consists of a fin body, headers/distributor and casing.
- For horizontal air flow.
- The QLEN casing has inward folded edges on the top and bottom plates and cover plates for the header and elbows. Available with or without drip tray (the drain is 32 mm and mounted horizontal).
- QLET has a basic casing without a cover plate for the header. The advantage is a smaller built-in depth.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, maximum efficiency.
- The heat exchangers are designed with a distributor for incoming refrigerant and a header for outgoing.
- Several different output stages.
- AMA-code QFC.22.
- For the greatest cleanliness the heat exchangers are shield gas soldered and are filled with nitrogen gas before delivery.

OPERATING DATA

- Normal air velocity should be 2-3 m/s.
- Max air velocity without droplet eliminator 2,9 m/s.
- Max air velocity with droplet eliminator: 5,0 m/s.
- For air flows up to 40 m³/s.
- Max operating pressure: 2,2 MPa at max operating temperature 100 °C.
- All heat exchangers are leakage tested using dry air under water.
- If reversible operation or hot-gas defrosting are used, the max. operating pressure should be observed.


MATERIAL & SIZE

The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet and possible drip tray of stainless steel. As standard the header is designed of steel which are of copper.


QLEN, QLEO, QLEQ: Standard sizes are from 200 x 200 mm to 3500 x 2400 mm. QLET: Standard sizes are from 200 x 200 mm to 1200 x 1000 mm. Materials for aggressive environments are available, see page 6.

ACCESSORIES

Additional accessories are available, see pages 94-96.

QLEN casing with inward folded edges on the top and bottom plates as well as cover plates for the header and elbows.

QLET with basic casing without cover plate.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Output	kW
	Air velocity	m/s
	Air pressure drop wet and dry	Ра
	Outgoing air humidity	%
	Condensate	g/s
Refrigerant side:	Refrigerant pressure drop	°C

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.

Maintenance

Operating and maintenance instructions are available via the production selection program Coils or from our website.

QLEN, QLET, QLEO, QLEQ

OUTPUT STAGES

Heat exchangers for evaporating refrigerant can be delivered divided into one, two or several output stages depending on the height of the heat exchanger. Heat exchangers are normally coupled so that every other coil is coupled to output stage one and every other to output stage two ("interlaced coupling"), see figure 1. Connections and fluid pipes are equipped with copper washers that indicate the stage association. Three or more output stages are normally divided vertically, *see figure 2*.

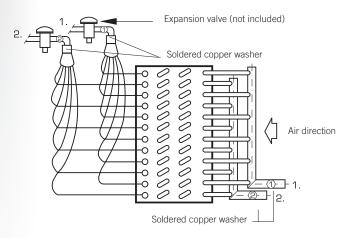


Figure 1. Two output stages with "interlace coupling".

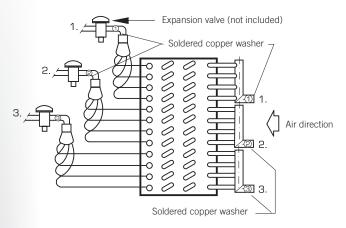


Figure 2. Three or more output stages are normally divided vertically.

Our products can be ordered with a number of different accessories and with other dimensions and materials than standard. Contact us for more information.

CODE KEY

QLE_- aaa - bbb - cc - dd - ee - f - h

QLEN =Casing with inward folded edges on the top
and bottom plates. Cover plate for the header.QLET =Basic casing without cover plate.

aaa = Width (cm)

QLEN: 020-350, QLET: 020-120 (Fin width excl. header and elbows)

bbb = Height (cm) QLEN: 020-240,

QLET: 020-100 (Fin height excl. plates)

cc = No. of tube rows

QLEN: 01, 02, 03, 04, 06, 08, 10, 12 QLET: 01, 02, 03, 04, 06

dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f = Connection side

QLEN: 1=right, 2=left, 3=right with drip tray,
4=left with drip tray,
5=right with drip tray and space for droplet eliminator,
6=left with drip tray and space for droplet eliminator.
QLET: 1=right, 2=left.

h = Number of stages

1=one circuit 2=shared circuit 1/2+1/2 3=shared circuit 1/3+2/3

QLE_ - aaa - bbb - cc - dd - ee - fff

- QLEO = Casing with outward folded edges on the top and bottom plates.
- QLEQ = Casing with outward folded edges on the top and bottom plates. Cover plate for the header.

aaa = Width (cm) 020-350

bbb = Height (cm) 020-240

cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12

dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

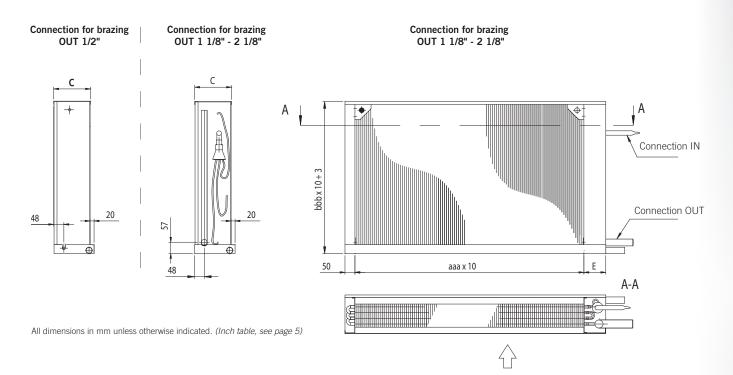
ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f-- = Connection side

1=right 2=left 3=right shared circuit 1/2+1/2 4=left shared circuit1/2+1/2 5=right shared circuit 1/3+2/3

6=left shared circuit 1/3+2/3

-ff = Edge height on top and bottom plate (mm) 17-99


80

QLEN, QLET, QLEO, QLEQ

DIMENSION DRAWINGS QLEN WITH DRIP TRAY, 1 STAGE: Casing with inward folded edges on the top and

bottom plates. Cover plate for the header. (Also available without drip tray).

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

f=3,4	С							
No. of rows		Connection OUT						
(cc)	1/2"	1 1/8"	1 3/8"	1 5/8"	2 1/8"			
01	96	130	160	192	255			
02	125	144	160	192	255			
03	154	154	160	192	255			
04	183	183	183	192	255			
06	240	240	240	240	255			
08	298	298	298	298	298			
10	356	356	356	356	356			
12	414	414	414	414	414			

f=5,6		С								
No. of rows		Connection OUT					Connection OUT			
(CC)	1/2"	1 1/8"	1 3/8"	1 5/8"	2 1/8"					
01	206	206	206	206	255					
02	235	235	235	235	255					
03	264	264	264	264	264					
04	293	293	293	293	293					
06	350	350	350	350	350					
08	408	408	408	408	408					
10	466	466	466	466	466					
12	524	524	524	524	524					

Connection OUT	E	Connection IN
1/2"	50	1/2"
1 1/8"	100	5/8" eller 7/8"
1 3/8"	100	7/8"
1 5/8 "	150	7/8"
2 1/8"	180	7/8"

QLEN, QLET, QLEO, QLEQ

DIMENSION DRAWING QLEN WITH DRIP TRAY, 2 STAGES: Casing with inward folded edges on the top and bottom plates. (Also available without drip tray).

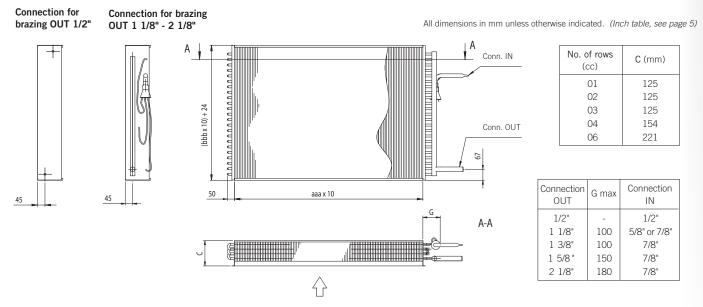
Connection for brazing OUT 1/2" Connection for brazing OUT 1 1/8" - 2 1/8" Connection for brazing OUT 1 1/8" - 2 1/8" C С 48 48 G Н A 1 ¢ 4 0 А ₩. IN 1 IN 2 bbb x 10 + 3 OUT 1 20 20 112 1 2 Ь ы ⊕ 50 aaa x 10 Е 57 OUT 2 A-A Ø

H=(cc-1) x 29

All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

f=3,4	С					
No. of rows	Connection OUT 2					
(cc)	1/2"	1 1/8"	1 3/8"	1 5/8"	2 1/8"	
01	96	200	251	307	414	
02	125	200	251	307	414	
03	154	200	251	307	414	
04	183	200	251	307	414	
06	240	240	251	307	414	
08	298	298	298	307	414	
10	356	356	356	356	414	
12	414	414	414	414	414	

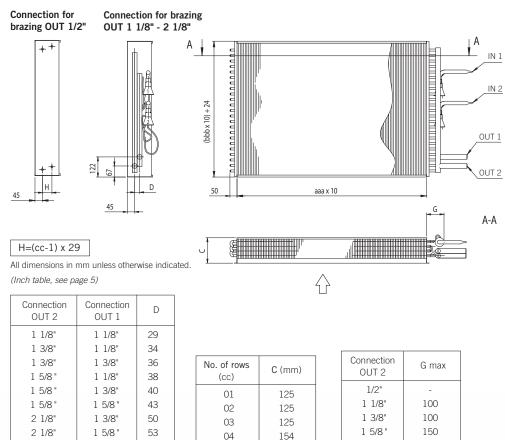
Connection OUT 2	Connection OUT 1	G
1 1/8"	1 1/8"	29
1 3/8"	1 1/8"	34
1 3/8"	1 3/8"	36
1 5/8 "	1 1/8"	38
1 5/8 "	1 3/8"	40
1 5/8 "	1 5/8 "	43
2 1/8"	1 3/8"	50
2 1/8"	1 5/8 "	53
2 1/8"	2 1/8"	58


f=5,6	С						
No. of rows	Connection OUT 2						
(cc)	1/2"	1 1/8"	1 3/8"	1 5/8"	2 1/8"		
01	206	206	251	307	414		
02	235	235	251	307	414		
03	264	264	264	307	414		
04	293	293	293	307	414		
06	350	350	350	350	414		
08	408	408	408	408	414		
10	466	466	466	466	466		
12	524	524	524	524	524		

 \mathcal{C}

Connection OUT 2	E
1/2"	50
1 1/8"	100
1 3/8"	100
1 5/8 "	150
2 1/8"	180

QLEN, QLET, QLEO, QLEQ


DIMENSION DRAWINGS QLET, 1 STAGE: Basic casing without cover plate.

2 1/8"

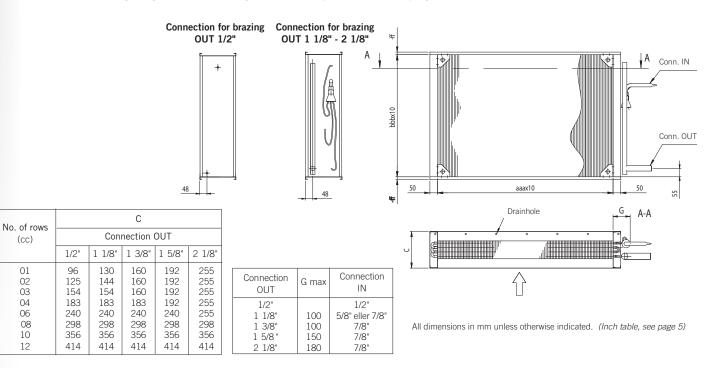
180

DIMENSION DRAWING QLET, 2 STAGES: Basic casing without cover plate.

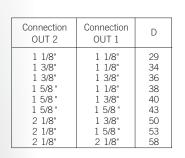
06

221

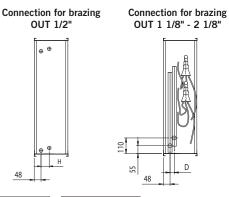
2 1/8"

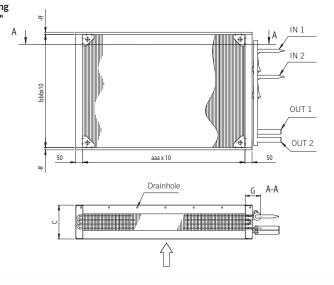

58


2 1/8"


QLEN, QLET, QLEO, QLEQ

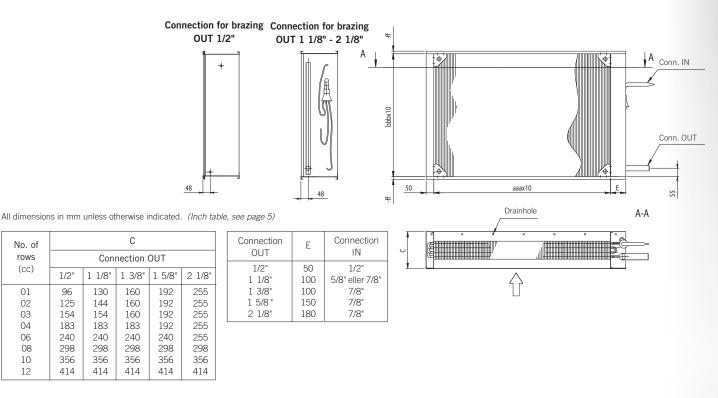
DIMENSION DRAWING QLEO, 1 STAGE: Casing with outward folded edges on the top and bottom plates.


Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.


	С					
No. of rows (cc)		Conn	ection O	UT 2		
(1/2"	1 1/8"	1 3/8"	1 5/8"	2 1/8"	
01 02 03 04	96 125 154 183 240	200 200 200 200	251 251 251 251 251 251	307 307 307 307 307	414 414 414 414	
06 08 10 12	240 298 356 414	240 298 356 414	251 298 356 414	307 307 356 414	414 414 414 414	

48

Connection OUT 2	G max
1/2" 1 1/8" 1 3/8" 1 5/8 " 2 1/8"	100 100 150 180

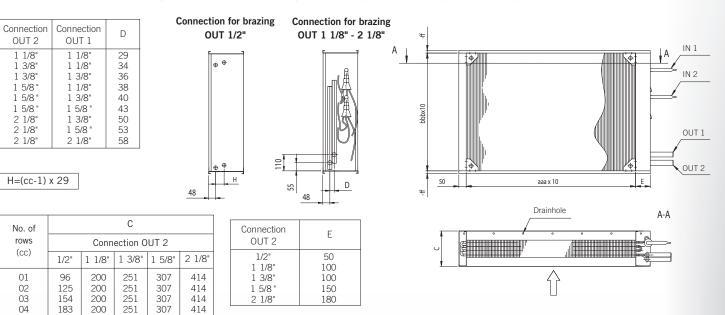


All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

84

QLEN, QLET, QLEO, QLEQ

QLEQ, 1 STAGE: Casing with outward folded edges on the top and bottom plates. Cover plate for the header.



QLEQ, 2 STAGES: Casing with outward folded edges on the top and bottom plates. Cover plate for the header.

No. of

rows

(cc)

HEAT EXCHANGERS FOR CONDENSATION REFRIGERANT

The heat exchangers QLON, QLOT, QLOO and QLOQ are designed for heating air with condensing medium and are mounted in the unit. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.

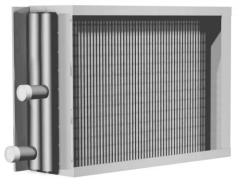
GENERAL

- The design consists of a fin body, headers and casing.
- QLON casing has inward folded edges on the top and bottom plates and cover plates for the header and elbows.
- QLOT has a basic casing without a cover plate for the header. The advantage of QLOT is a smaller built-in depth.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, maximum output.
- Available in several output stages.
- AMA-code QFC.

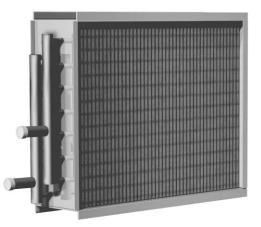
OPERATING DATA

- Normal air velocity should be 3-4 m/s.
- Max air velocity: 5,0 m/s.
- Max operating pressure: 2,2 MPa at max operating temperature 100 °C.
- For air flows up to 40 m³/s.
- All heat exchangers are leakage tested using dry air under water.

MATERIAL & SIZE (see the code key for more info)


The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. The headers are made of copper. Standard sizes are from 200×200 mm to 3500×2400 mm. Materials for aggressive environments are available, see page 6.

OUTPUT STAGES


The heat exchangers can be delivered divided into one, two or several output stages depending on the height of the heat exchanger. Heat exchangers with two output stages are normally coupled so that every other coil is coupled to output stage 1 and every other to output stage 2 ("interlaced coupling"). Three or more output stages are normally divided vertically.

INSTALLATION

The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected so that a counter flow coupling is obtained. The heat exchanger must be ordered in either a right or left-hand design. The system must be fully bled to give optimal performance.

QLON casing has inward folded edges on the top and bottom plates and cover plates for the header and elbows.

QLOT has a basic casing without cover plate.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Outout	kW
	Air velocity	m/s
	Air pressure drop	Ра
Water side:	Return temperature	°C
	Media flow	l/s
	Media pressure drop	kPa

ACCESSORIES

Additional accessories are available, see pages 94-96.

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

QLON, QLOT, QLOO, QLOQ

CODE KEY

QLO - aaa - bbb - cc - dd - ee - f - h

QLON = Casing with inward folded edges on the top and bottom plates. Cover plate for the header. QLOT = Basic casing without cover plate.

aaa = Width (cm)

QLON: 020-350

QLOT: 020-120 (Fin width excl. header and elbows) bbb = Height (cm)

QLON: 020-240

QLOT: 020-100 (Fin height excl. plates)

cc = No. of tube rows QLON: 01, 02, 03, 04, 06, 08, 10, 12 QLOT: 01, 02, 03, 04, 06

dd = Fin spacing (mm x 10) 18, 20, 25, 30, 40, 50, 60

ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f = Connection side

QLON: 1=right, 2=left, 3=right with dip tray, 4=left with dip tray, 5=right with drip tray and space for droplet eliminator, 6=left with drip tray and space for droplet eliminator. QLOT: 1=right, 2=left

h = Number of stages

1=one circuit 2=shared circuit 1/2+1/2 3=shared circuit 1/3+2/3

QLO_ - aaa - bbb - cc - dd - ee - fff

- QLOO = Casing with outward folded edges on the top and bottom plates.
- QLOQ = Casing with outward folded edges on the top and bottom plates. Cover plate for the header.
- aaa = Width (cm) 020-350
- bbb = Height (cm) 020-240

cc = No. of tube rows 01, 02, 03, 04, 06, 08, 10, 12

- dd = Fin spacing (mm x 10)
- 18, 20, 25, 30, 40, 50, 60

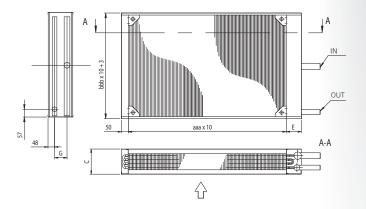
ee = Number of fluid paths 02, 04, 06, 08, 10, etc.

f-- = Connection side

1=right

2=left

3=right shared circuit 1/2+1/2 4=left shared circuit1/2+1/2

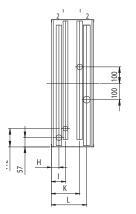

5=right shared circuit 1/3+2/3

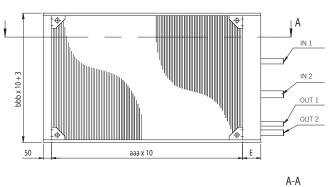
6=left shared circuit 1/3+2/3

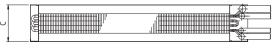
-ff = Edge height on top and bottom plate (mm) 17-99

Dimension drawing QLON, 1 stage:

Casing with inward folded edges on the top and bottom plates. Cover plate for the header.


	С					
No. of rows (cc)		Connec	tion IN			
(00)	1 1/8"	1 3/8"	1 5/8"	2 1/8"		
01	102	102	112	136		
02	125	125	127	146		
03	154	154	154	154		
04	183	183	183	183		
06	240	240	240	240		
08	298	298	298	298		
10	356	356	356	356		
12	414	414	414	414		


Connec.	_	Connec.	G			No.	of rows	(cc)		
IN	E	OUT	1	2	3	4	6	8	10	12
1 1/8"	100	7/8"	29	29	58	87	144	205	263	321
1 3/8"	100	1 1/8"	36	58	58	87	144	205	263	321
1 5/8"	100	1 3/8"	43	58	58	87	144	205	263	321
2 1/8"	150	1 5/8"	58	58	58	87	144	205	263	321

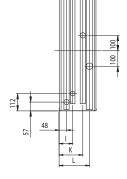

QLON, QLOT, QLOO, QLOQ

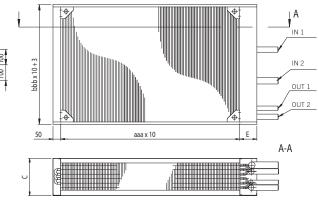
QLON, 2 STAGES, 3-4 TUBE ROWS: Casing with inward folded edges on the top and bottom plates.

Cover plate for the header.

All dimensions in	mm unless oth	nerwise indicated.	(Inch table, se	e page 5)

Conn.IN step 2	Conn.IN step 1	Conn. OUT step 2	Conn. OUT step 1	E	Н	L cc=03	L cc=04	
1 1/8"	1 1/8"	7/8"	7/8"	100	39	155	184	
1 3/8"	1 1/8"	1 1/8"	7/8"	100	39	162	194	
1 3/8"	1 3/8"	1 1/8"	1 1/8"	100	39	162	194	
1 5/8"	1 1/8"	1 3/8"	1 1/8"	100	32	169	198	
1 5/8"	1 3/8"	1 3/8"	1 1/8"	100	32	169	198	
1 5/8"	1 5/8"	1 3/8"	1 3/8"	100	32	169	198	
2 1/8"	1 3/8"	1 5/8"	1 1/8"	150	25	184	213	
2 1/8"	1 5/8"	1 5/8"	1 3/8"	150	25	184	213	
2 1/8"	2 1/8"	1 5/8"	1 5/8"	150	25	184	213	


		C				
No. of rows	Cor	nection				
(cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"		K
03	194	194	194	211	68	126
04	223	223	223	240	68	155


QLON, 2 STAGES, 6-12 TUBE ROWS: Casing with inward folded edges on the top and bottom plates.

Cover plate for the header.

All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

No. of	С								
rows	Connection IN, 2 step								
(cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"					
06	240	240	240	252					
08	298	298	298	310					
10	356	356	356	368					
12	414	414	414	426					

 $\hat{\mathbb{T}}$

	Conn.IN	Conn.IN		Conn.UT	E			ł	K			I	L	
	step 2	step 1	step 2	step 1	L	1	cc=06	cc=08	cc=10	cc=12	cc=06	cc=08	cc=10	cc=12
Γ	1 1/8"	1 1/8"	7/8"	7/8"	100	77	163	224	282	340	192	253	311	369
	1 3/8"	1 1/8"	1 1/8"	7/8"	100	77	158	219	277	335	192	253	311	369
	1 3/8"	1 3/8"	1 1/8"	1 1/8"	100	77	156	217	275	333	192	253	311	369
	1 5/8"	1 1/8"	1 3/8"	1 1/8"	100	82	154	215	273	331	192	253	311	369
	1 5/8"	1 3/8"	1 3/8"	1 1/8"	100	82	152	213	271	329	192	253	311	369
	1 5/8"	1 5/8"	1 3/8"	1 3/8"	100	84	149	210	268	326	192	253	311	369
	2 1/8"	1 3/8"	1 5/8"	1 1/8"	150	86	142	203	261	319	192	253	311	369
	2 1/8"	1 5/8"	1 5/8"	1 3/8"	150	88	139	200	258	316	192	253	311	369
	2 1/8"	2 1/8"	1 5/8"	1 5/8"	150	91	163	224	282	340	221	282	340	398

QLON, QLOT, QLOO, QLOQ

DIMENSION DRAWINGS QLOT, 1 STAGE: Basic casing without cover plate.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

C (mm)

125 125

125

154

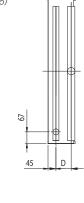
221

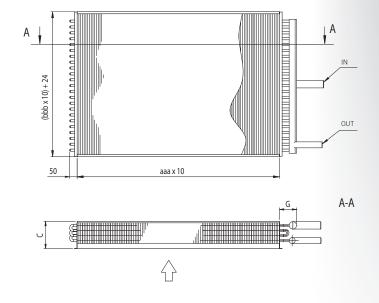
All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

No. of rows

(cc)

01


02 03


04

06

Connection IN	G max	
1 1/8"	100	
1 3/8" 1 5/8"	100 100	
2 1/8"	150	

			D						
Connection	110.0110W3(CC)								
IN	OUT	01	02	03	04	06			
1 1/8"	7/8"	29	29	58	87	144			
1 3/8"	1 1/8"	36	58	58	87	144			
1 5/8"	1 3/8"	43	58	58	87	144			
2 1/8"	1 5/8"	58	58	58	87	144			

DIMENSION DRAWING QLOT, 2 STAGES:

Basic casing without cover plate.

All dimensions in mm unless otherwise indicated (Inch table, see page 5)

Connection

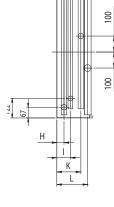
IN 2

1 1/8"

1 3/8"

1 3/8"

1 5/8"


1 5/8"

1 5/8"

2 1/8"

2 1/8"

No. of rows (cc)	C (mm)
01	125
02	125
03	125
04	154
06	221

(bbbx10)+24		 			IN 1 IN 2 OUT 1 OUT 2
50	-	aaa x 10		L. L	
t			 G G G G G G G G G G G G G G G G G G G		A-A
		\bigcirc			

Cann				ł	-				Κ			L	
Conn. IN 2	Conn. IN 1	Conn. OUT 2	Conn. ⁻ OUT 1	cc= 03-04	cc= 06	cc= 03-04	cc= 06	cc= 03	cc= 04	сс= 06	cc= 03	cc= 04	cc= 06
1 1/8"	1 1/8"	7/8"	7/8"	16	45	45	74	103	132	160	132	161	189
1 3/8"	1 1/8"	1 1/8"	7/8"	16	45	45	74	103	132	155	139	168	189
1 3/8"	1 3/8"	1 1/8"	1 1/8"	16	45	45	74	103	132	153	139	168	189
1 5/8"	1 1/8"	1 3/8"	1 1/8"	9	45	45	79	103	132	151	146	221	189
1 5/8"	1 3/8"	1 3/8"	1 1/8"	9	45	45	79	103	132	149	146	221	189
1 5/8"	1 5/8"	1 3/8"	1 3/8"	9	45	45	81	103	132	146	146	221	189
2 1/8"	1 3/8"	1 5/8"	1 1/8"	2	45	45	83	103	132	139	161	221	189
2 1/8"	1 5/8"	1 5/8"	1 3/8"	2	45	45	85	103	132	136	161	221	189

G max

100

100

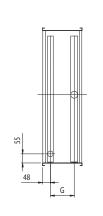
100

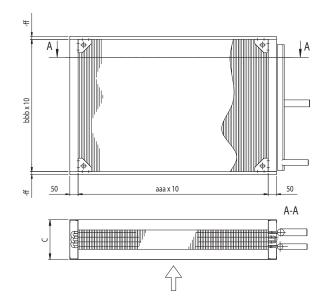
100

100

100

150

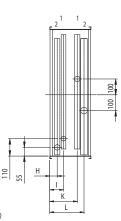

150


QLON, QLOT, QLOO, QLOQ

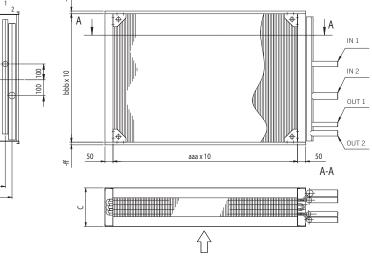
DIMENSION DRAWINGS QLOO, 1 STAGE: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

	С							
No. of rows (cc)	Connection IN							
(00)	1 1/8"	1 3/8"	1 5/8"	2 1/8"				
01	102	102	112	136				
02	125	125	127	146				
03	154	154	154	154				
04	183	183	183	183				
06	240	240	240	240				
08	298	298	298	298				
10	356	356	356	356				
12	414	414	414	414				



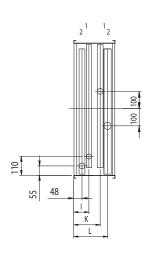
All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

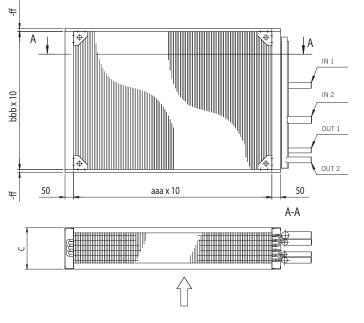

Connection	Connection		G	N	o. of row	s (delkod	cc)		
IN	OUT	1	2	3	4	6	8	10	12
1 1/8"	7/8"	29	29	58	87	144	205	263	321
1 3/8"	1 1/8"	36	58	58	87	144	205	263	321
1 5/8"	1 3/8"	43	58	58	87	144	205	263	321
2 1/8"	1 5/8"	58	58	58	87	144	205	263	321

DIMENSION DRAWING QLOO, 2 STAGES, 3-4 TUBE ROWS:

Casing with outward folded edges on the top and bottom plates.

Conn. IN 2	Conn. IN 1	Conn. OUT 2	Conn. OUT 1	Н	L cc=03	L cc=04
1 1/8"	1 1/8"	7/8"	7/8"	39	155	184
1 3/8"	1 1/8"	1 1/8"	7/8"	39	162	194
1 3/8"	1 3/8"	1 1/8"	1 1/8"	39	162	194
1 5/8"	1 1/8"	1 3/8"	1 1/8"	32	169	198
1 5/8"	1 3/8"	1 3/8"	1 1/8"	32	169	198
1 5/8"	1 5/8"	1 3/8"	1 3/8"	32	169	198
2 1/8"	1 3/8"	1 5/8"	1 1/8"	25	184	213
2 1/8"	1 5/8"	1 5/8"	1 3/8"	25	184	213
2 1/8"	2 1/8"	1 5/8"	1 5/8"	25	184	213



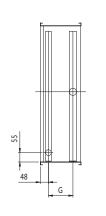

No. of		C	;			
No. of rows	(Connect				
(cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"	I	K
03	194	194	194	211	68	126
04	223	223	223	240	68	155

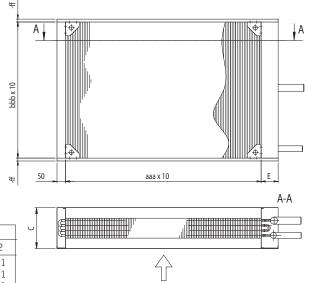
DIMENSION DRAWING QLOO, 2 STAGES, 6-12 TUBE ROWS:

Casing with outward folded edges on the top and bottom plates.

Conn.	Conn.	Conn.	Conn.	1		I	K				L	
IN 2	IN 1	OUT 2	OUT 1		cc=06	cc=08	cc=10	cc=12	cc=06	cc=08	cc=10	cc=12
1 1/8"	1 1/8"	7/8"	7/8"	77	163	224	282	340	192	253	311	369
1 3/8"	1 1/8"	1 1/8"	7/8"	77	158	219	277	335	192	253	311	369
1 3/8"	1 3/8"	1 1/8"	1 1/8"	77	156	217	275	333	192	253	311	369
1 5/8"	1 1/8"	1 3/8"	1 1/8"	82	154	215	273	331	192	253	311	369
1 5/8"	1 3/8"	1 3/8"	1 1/8"	82	152	213	271	329	192	253	311	369
1 5/8"	1 5/8"	1 3/8"	1 3/8"	84	149	210	268	326	192	253	311	369
2 1/8"	1 3/8"	1 5/8"	1 1/8"	86	142	203	261	319	192	253	311	369
2 1/8"	1 5/8"	1 5/8"	1 3/8"	88	139	200	258	316	192	253	311	369
2 1/8"	2 1/8"	1 5/8"	1 5/8"	91	163	224	282	340	221	282	340	398

No. of rows	(
(cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"	Н
06	240	240	240	252	48
08	298	298	298	310	48
10	356	356	356	368	48
12	414	48			

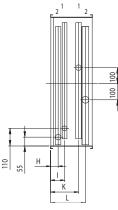

QLON, QLOT, QLOO, QLOQ

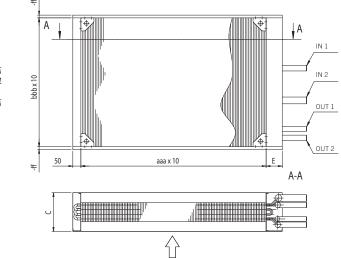

DIMENSION DRAWING QLOQ, 1 STAGE: Casing with outward folded edges on the top and bottom plates.

Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

All dimensions in mm unless otherwise indicated. (Inch table, see page 5)

Number of		С							
rows		Connection IN							
(delkod cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"					
01	102	102	112	136					
02	125	125	127	146					
03	154	154	154	154					
04	183	183	183	183					
06	240	240	240	240					
08	298	298	298	298					
10	356	356	356	356					
12	414	414	414	414					

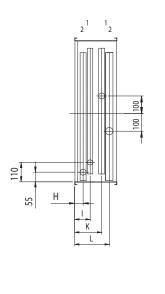


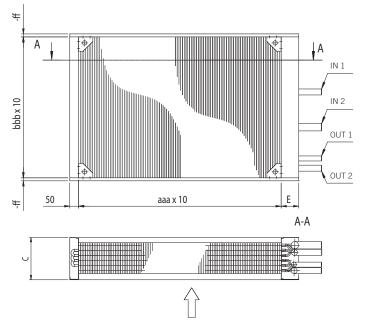

Connection		Connection	G	G Number of rows (delkod cc)						
IN		OUT	1	2	3	4	6	8	10	12
1 1/8"	100	7/8"	29	29	58	87	144	205	263	321
1 3/8"	100	1 1/8"	36	58	58	87	144	205	263	321
1 5/8"	100	1 3/8"	43	58	58	87	144	205	263	321
2 1/8"	150	1 5/8"	58	58	58	87	144	205	263	321

DIMENSION DRAWING QLOQ, 2 STAGES, 3-4 TUBE ROWS:

Casing with outward folded edges on the top and bottom plates.

Conn. IN 2	Conn. IN 1	Conn. OUT 2	Conn. OUT 1	E	Н	L cc=03	L cc=04
1 1/8" 1 3/8" 1 3/8" 1 5/8" 1 5/8" 1 5/8" 2 1/8" 2 1/8"	1 1/8" 1 1/8" 1 3/8" 1 3/8" 1 3/8" 1 3/8" 1 3/8" 1 3/8"	7/8" 1 1/8" 1 1/8" 1 3/8" 1 3/8" 1 3/8" 1 5/8" 1 5/8"	7/8" 7/8" 1 1/8" 1 1/8" 1 1/8" 1 3/8" 1 1/8" 1 3/8"	100 100 100 100 100 100 150 150	39 39 32 32 32 32 25 25	155 162 169 169 169 169 184 184	184 194 194 198 198 198 213 213
2 1/8"	2 1/8"	1 5/8"	1 5/8"	150	25	184	213




No. of		C	;			
rows	(Connect				
(cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"	I	K
03	194	194	194	211	68	126
04	223	223	223	240	68	155

QLON, QLOT, QLOO, QLOQ

DIMENSION DRAWING QLOQ, 2 STAGES, 6-12 TUBE ROWS:

Casing with outward folded edges on the top and bottom plates.

No.of		C	;		
rows	(
(cc)	1 1/8"	1 3/8"	1 5/8"	2 1/8"	Н
06	240	240	240	252	48
08	298	298	298	310	48
10	356	356	356	368	48
12	414	414	414	426	48

Conn.	Conn.	Conn.	Conn.	E	1		ł	<			l	-	
IN 2	IN 1	OUT 2	OUT 1	L		cc=06	cc=08	cc=10	cc=12	cc=06	cc=08	cc=10	cc=12
1 1/8"	1 1/8"	7/8"	7/8"	100	77	163	224	282	340	192	253	311	369
1 3/8"	1 1/8"	1 1/8"	7/8"	100	77	158	219	277	335	192	253	311	369
1 3/8"	1 3/8"	1 1/8"	1 1/8"	100	77	156	217	275	333	192	253	311	369
1 5/8"	1 1/8"	1 3/8"	1 1/8"	100	82	154	215	273	331	192	253	311	369
1 5/8"	1 3/8"	1 3/8"	1 1/8"	100	82	152	213	271	329	192	253	311	369
1 5/8"	1 5/8"	1 3/8"	1 3/8"	100	84	149	210	268	326	192	253	311	369
2 1/8"	1 3/8"	1 5/8"	1 1/8"	150	86	142	203	261	319	192	253	311	369
2 1/8"	1 5/8"	1 5/8"	1 3/8"	150	88	139	200	258	316	192	253	311	369
2 1/8"	2 1/8"	1 5/8"	1 5/8"	150	91	163	224	282	340	221	282	340	398

HEAT EXCHANGERS FOR STEAM

QLSK

The heat exchanger QLSK is designed to heat air with steam. Fitted in the unit and intended for vertical steam transfer. The design conforms with the Pressure Equipment Directive PED 2014/68/EU.

GENERAL

- The design consists of a fin body, headers and casing.
- The tubes are zigzag mounted in the fin body to give, together with the pleated fins, the highest output.
- The heat exchanger is designed for vertical steam transfer.
- All connections are fitted with male pipe threads (SS-EN ISO 228-1).
- Smooth cover plates over the header.
- AMA-code QFC.
- Low pressure drop on the air side.

OPERATING DATA

- Normal air velocity should be 3-4 m/s.
- Max air velocity: 5 m/s.
- For air flows up to 40 m³/s.
- Max operating pressure: 1,0 MPa at max operating temperature 185 °C.
- All heat exchangers are leakage tested using dry air under water.

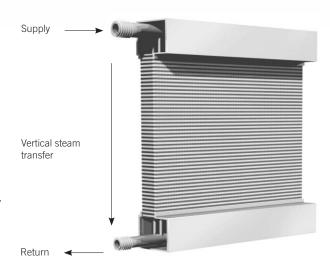
STEAM CLEANLINESS

The steam's pH-value should be between 8,8 and 9,2. The oxygen (O_2) content must not exceed 0,01 mg/kg. Ammonia content (NH_3) must not exceed 0,3 mg/kg.

MATERIAL & SIZE

The heat exchanger is designed using copper tubes and aluminium fins. The casing is made of hot-dip galvanized steel sheet. The header on the steam side is made of steel (DN 25 is made of copper) and on the condensate side of copper. Standard sizes are from 200 x 200 mm to 3500 x 1800 mm. Materials for aggressive environments are available, *see page 6.*

INSTALLATION


The heat exchanger is equipped with signs that show how the supply and return lines are to be connected. The heat exchanger is connected with steam to the upper pipe and the return to the lower pipe, see the figure above.

FREEZE PROTECTION

If there is a risk of freezing it is appropriate to fit a freeze protection sensor in the air stream, alternatively an electric heater can preheat the air.

ACCESSORIES

Additional accessories are available, see pages 94-96.

QLSK with inward folded edges on the cover plate. The heat exchanger is connected with steam to the upper pipe and the return to the lower pipe.

DIMENSIONING VIA COILS

Dimensioning is performed using the product selection program Coils, which can be downloaded from our website. Coils shows, among others, dimension drawings and the following data:

Air side:	Air temperature out	°C
	Outout	kW
	Air velocity	m/s
	Air pressure drop	Ра
Steam side:	Return temperature	°C
	Steam flow	l/s
	Condensation pressure	Bar

MAINTENANCE

Operating and maintenance instructions are available via the production selection program Coils or from our website.

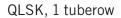
CODE KEY

QLS_ - aaa - bbb - cc - dd - ee - ff

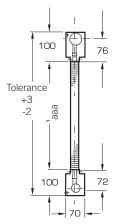
QLSK = Casing with cover plate for header

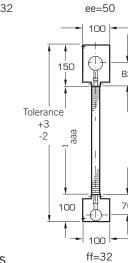
aaa = Width = unit height (cm) 020-350
(Fin width excl. header and elbows)
bbb = Height = unit width (cm) 020-180 (Fin width)
cc = No. of tube rows 01, 02
dd = Fin spacing 18, 20, 25, 30, 40, 50, 60
ee = Connection size, steam side
ff = Connection size, condensate side

ee=80

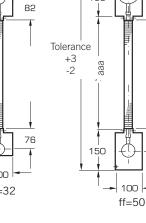

100

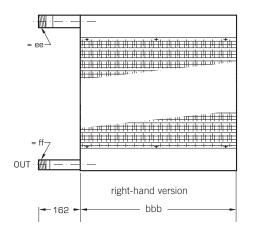
82

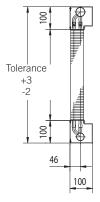

150

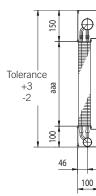

QLSK

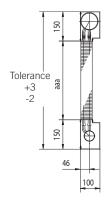
DIMENSION DRAWINGS QLSK: Casing with cover plate for header.










All dimensions in mm unless otherwise indicated.

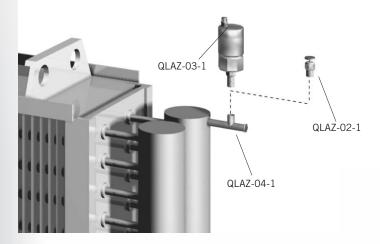
Detailed dimension drawing, weight and volume are gathered via the product selection program Coils.

ACCESSORIES

ACCESSORIES

Accessori	es Type	Page
QLAZ-02 QLAZ-03 QLAZ-04 QLAZ-20 QLAZ-30 QLAZ-32 QLAZ-11 QLAZ-15	Manual bleed valve Automatic bleed valve with non-return valve Nipple Fin comb Drain on side Expansion valves Weld flange, steel Threaded flange steel	94 94 95 95 95 95 95
QLAZ-15 QLAZ-41	I hreaded flange steel Soldered flange, bronze/ steel	
QLAZ-41 QLAZ-42	Soldered flange, bronze/ steel Threaded flange bronze	
QLAZ-43 QLAZ-44 QLAZ-25	Threaded flange bronze/steel Flange gasket Droplet eliminator	95 95

QLAZ 02, 03, 04


The valve must always be fitted vertically with the air valve above. Note the top clearance when building in and extending (see dimensional sketches). Install the supplied non-return valve, which is self-sealing against the valve first.

The valve cap protects the air valve from external dirt and must always be fitted, opened two turns to work. As, the water flows into the valve housing, the float rises and closes the valve. When air collects in the valve housing the float drops and the valve opens, so that the air can escape.

If the valve starts to leak due to dirt, the valve housing is dismantled from the non-return valve (non-return valve shall remain on the nipple QLAZ-04-1). The over and lower sections of the valve housing are then separated and the parts cleaned. The valve seat is not damaged by high water temperatures or by water that contains antifreeze.

INSTALLATION VALVE AND NIPPLE

The valve is connected to the bleed nipple on the heat exchanger with the help of nipple QLAZ-04-1, which can also be combined with freeze protection.

MANUAL BLEED VALVE QLAZ-02-1 For water coils. Fitted together with nipple QLAZ-04-1.

AUTOMATIC BLEED VALVE WITH NON-RETURN VALVE QLAZ-03-1

For max. 115°C and 1.1 MPa (11 atmos. ex. press.). For water coils together with QLAZ-04-1.

NIPPLE QLAZ-04-1

For connection of freeze protection and bleed valve QLAZ-03-1 or drain valve on the coil. The nipple is used in combination with

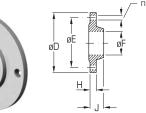
bleed valve QLAZ-02-1, QLAZ-03-1or freeze protection or drain valve on the coil.

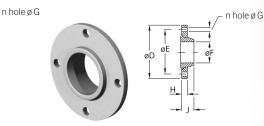
ACCESSORIES

QLAZ

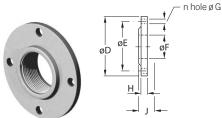
QLAZ 20, 30, 32

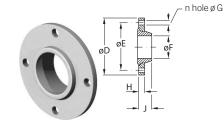
Fin comb QLAZ-20 Supplied in packs of 10.


Weld flange, steel QLAZ-11-bb For connection on the water or steam side. *Size (bb): See the table below.*


Expansion valve QLAZ-32

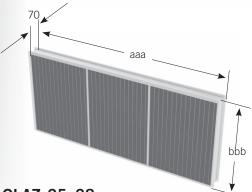
n hole ø G




Threaded flange, steel QLAZ-15-bb For connection on the water or steam side. *Size (bb): See the table below.*

Soldered flange, bronze/steel QLAZ-41-bb For connection on the water, steam and condensate side. *Size (bb): See the table below.*

Threaded flange bronze QLAZ-42-bb For connection on the water or steam side. *Size (bb): See the table below.*


Threaded flange bronze/steel QLAZ-43-bb For connection on the water or steam side. *Size (bb): See the table below.*

Flange gasket QLAZ-44-bb

For connection between flanges. *Size (bb): 25, 32, 50, 80.*

Size (bb)	D	E	G	n	QLAZ-11				QLAZ-15				QLAZ-41				QLAZ-42				QLAZ-43	
					F	Н	J	Weight (kg)	F	Н	J	Weight (kg)	F	Η	J	Weight (kg)	F	Н	J	Weight (kg)	F	Weight (kg)
DN 25 DN 32 DN 50 DN 80	115 140 165 200	85 100 125 160	14 18 18 18	4 4 4 8	28,5 37,2 54,5 82,5	16 16 18 20	38 40 45 50	1,1 1,7 2,5 3,7	1" 1 1/4" 2" 3"	16 16 18 20	24 26 28 34	1,1 1,6 2,5 4,1	28,3 41,6 54,3 89,3	17 17 17 19	-	1,0 1,4 2,0 2,9	1" 1 1/4" 2" 3"	16 16 18 20	21 21 23 26	1,3 20 3,0 4,3	1" 1 1/4" 2" 3"	1,0 1,4 2,0 2,9

QLAZ-11 is designed according to SMS 2035 (DIN 2635) and QLAZ-15 according to SMS 348 (DIN 2566). QLAZ-41 and QLAZ-42 s designed according to SMS 2033 (DIN 2633) and SMS 2035 (DIN 2635). ACCESSORIES

QLAZ 25, 28

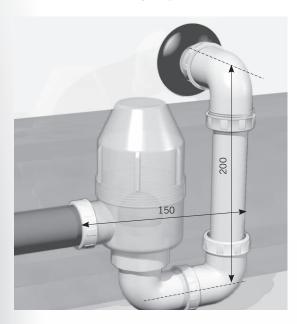
DROPLET ELIMINATOR QLAZ-25-AAA-BBB-C

aaa= Width, cm

- bbb= Height, cm
- c= Material in coil casing where
- 1= galvanized steel sheet, 2= stainless steel, 2333

3= austenitic stainless steel, 2343

Supplied assembled on coils ordered at the same time unless otherwise stated. Note the increased build-in depth. See the dimension drawing. Gives approx. 15 Pa higher air pressure drop at 3 m/s. The droplet eliminator frame is made of stainless steel.


Order example:


Heat exchanger: QLCB-100-080-03-20-04-1-A Droplet eliminator: QLAZ-25-100-080-1

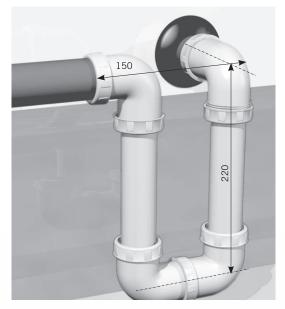
QLAZ 26, 27

WATER SEAL, FOR UNDERPRESSURE INSTALLATION QLAZ-26

Fits the duct coils drainage tray, thread connection DN 32.

ADAPTER SLEEVE QLAZ-28-bbb-ccc-d

bbb= Width, cm ccc= Height, cm d= Material in coil casing where 1= galvanized steel sheet, 2= stainless steel, 2333 3= austenitic stainless steel, 2343


For the transition from flange to PG-slip clamp or vice versa, flange holes according to RFHF, RVGL. Supplied unassembled in four parts, but assembled easily with the supplied screws.

Order example:

Heat exchanger: QLHF-100-080-03-20-04-1-A Adapter sleeve: QLAZ-28-100-080-1

WATER SEAL, FOR OVERPRESSURE INSTALLATION QLAZ-27

Fits the duct coils drainage tray, thread connection DN 32. Withstands pressure to approx. 1500 Pa.

alla a